EMS MEd Blog

A Call to Action: Elizabeth Rosenthal's An American Sickness

by Melody Glenn, MD

9781594206757_custom-3801ead7ce5df3a0cb7eee5e36afe7976ff4501d-s400-c85.jpg

The voice on the other end of the phone sounds frantic and rushed, “He can’t breathe!” The palpable panic wakes the emergency dispatcher out of his post-lunch daze. He sits up a little straighter and shifts his gaze to the periphery, preparing to listen more closely.  “Okay, tell me exactly what happened.”

“My son is allergic to peanuts, and I think he accidentally ate some. He is wheezing and his voice sounds muffled.  Are you sending someone?!”

“Yes, I’m sending the paramedics to help you now. Stay on the line and I’ll tell you exactly what to do next.” As he flips to the epinephrine auto injector card, he asks, “Does he have any specific injections or other medications to treat this type of reaction?”

“He used to have an epi-pen, but we used it a few months ago.  When I went to refill his prescription, it was $600!  Please, hurry!”

 

We have all heard about the exorbitant price increases in epinephrine, narcan, and albuterol, and may have seen firsthand the impacts on patient care. But what is the story behind these increases? In An American Sickness, Elisabeth Rosenthal attempts to break down some of the perverse incentives that lead to rising healthcare costs, costs that quickly add up.  Healthcare bills now comprise the greatest percentage of consumer debt, and medical debt is the number one reason why Americans file for bankruptcy.

Image source: https://www.theatlantic.com/health/archive/2014/10/why-americans-are-drowning-in-medical-debt/381163/

Image source: https://www.theatlantic.com/health/archive/2014/10/why-americans-are-drowning-in-medical-debt/381163/

Rosenthal trained in internal medicine, worked for a few years in an ER, and then switched careers to become a journalist/editor. Although sometimes her tone is overly strong, making the writing feel like more of an OpEd than nonfiction, and some of her examples are made to appear more black-and-white than clinical medicine actually is, the overall message rings true.  Health care is a highly profitable industry with a lot of players scrambling to augment their slice of the pie.  As such, healthcare isn’t going to regulate itself.

The first half of the book delves into the problem.  Each chapter focuses on a different segment of the healthcare sector, including pharmaceuticals, insurance companies, hospitals, physicians, and medical devices, showing how each has been guilty of prioritizing their own financial gain over patient value. In our bookclub discussion, we looked at examples that seemed to hold the most relevance to EMS, the first being the shortage of generic medications.  Perhaps the most notorious example is that of Droperidol, and the almost conspiratorial series of events surrounding its disappearance (p. 119-122).

Around 2005, GlaxoSmithKline started to promote the use of Zofran for general nausea, as initially, it had just been marketed as a treatment for chemo-induced nausea. Around that same time, the FDA issued a black box warning linking Droperidol to life-threatening arrhythmias, and a major pharmaceutical company purchased and subsequently closed the plant that was producing the generic compazine. Physicians were stuck using Zofran, which cost several times that of its generic competitors.  Some doctors filed a Freedom of Information Act to obtain the documents that lead to the FDA’s warning.  In the documents, they found that the abnormal heart rhythms were only induced by administering Droperidol in very high quantities -- 50-100 times greater than the standard amount -- and that the same arrhythmias could be provoked by high doses of other anti-nausea drugs (including Zofran). Since then, Glaxo has reached a $3 billion settlement with the U.S. Department of Justice for a variety of misdeeds, but Zofran continues to earn a profit. 

Rosenthal also addresses the potential for conflicts of interest in the creation of clinical guidelines (p.200-204). When specialists write their own guidelines, they have financial incentives to promote their own procedures. For example, urologists recommended that all men be screened with a PSA level, radiologist’s advised yearly mammograms, and orthopedists encouraged arthroscopy to help with knee pain. These recommendations have since been revised based on new evidence questioning their benefit.  Although the majority of EMS and emergency medicine position statements and guidelines  address common conditions and do not encourage expensive diagnostics or treatments, we still get paid for doing more to our patients.  It remains true that very often we work harder to do less, both in terms of time for shared decision making, patient discussion and documentation, and get paid less to so. In EMS, the system aligns financial incentives with transport, which is our default mode, whether or not this is best for the patient.

 In Chapter 9, Rosenthal suggests that the trend towards hospital consolidation often leads to increased costs and decreased quality.  Although initially billed as a way to obtain lower rates through economies of sale, this isn’t necessarily what occurs (p.207).  When one network owns all of the local hospitals and clinics in an area, and employs the majority of physicians, there is no longer any competition.  This effectively gives the conglomerate the leverage needed to demand high rates from corporations, insurers, and HMO’s (p. 207). They can also use their proprietary electronic medical record system as a tool to keep competitors out, which is antithesis to the original intent of moving towards EMR systems (211). Although Rosenthal doesn’t mention EMS in this context, I wonder if the same cautions apply.

Rosenthal only devotes a few pages to EMS (p.157-160), and they don’t seem particularly well-informed. She seems longful for the days when ambulance services were free (p.158). She doesn’t seem to understand that quality has improved and that EMS is now predominantly staff by medical professionals and considered a medical subspecialty. Instead, she attributes the rise in cost to the use of professional billing companies (p.159). Also, she doesn’t address the cost of preparedness. It takes time, preparation, training, and money to be ready to handle any emergency at any time.

Part II of the book provides various strategies that individuals, institutions, and policymakers can implement in order to fix the rising costs of healthcare. She suggests that individuals ask their clinicians how much various diagnostic and treatment options cost. I imagine many would not know, as we are purposefully not taught this information in medical school or residency because of the notion that cost should not drive our decision whether or not a treatment is clinically necessary. Also, there is little price transparency in our medical system, so it is hard for us to even get this information from our own hospital finance departments.  Therefore, she also suggests that patients do their own research. In Appendices A and B, she shares various websites where patients can find the “fair price” for a large number of procedures and medications and see how your hospital compares. Of course, this is less useful in emergency situations.

From the policy perspective, she gives several concrete suggestions, including that:

·       Limits be placed on economic damages in malpractice lawsuits

·       Medical practices offer warranties and guarantees (reducing the need for malpractice suits)

·       Drug companies obtain approval before ceasing a drug’s production

·       The FDA reform their drug patent process to promote low-cost generics

·       The US government work harder to negotiate and set national drug prices

·       A public option of Medicare be available

·       There is more regulation over health insurance companies

·       The Federal Trade Commission become more involved in using antitrust law to break up large conglomerates

Although these solutions, much like the rest of the book, are not written specifically for emergency medicine or EMS, the overall ideas are still relevant. The book’s strong tone is likely designed to serve as a call to action.  We should take this an an opportunity to ask ourselves -- how can EMS be involved in reforming our country’s healthcare system? 

Glenn.001.jpeg

Special thanks to John Brown, MD, MPA, the medical director of the San Francisco EMS Agency and program director of the UCSF-ZSFG Fellowship in EMS and Disaster Medicine, and Thomas Sugarman, MD, FACEP, FAAEM, Secretary-Treasurer of the Alameda Contra Costa Medical Association, Co-Chair of the East Bay Safe Prescribing Coalition and a Past-President of the California chapter of the American College of Emergency Physicians, for adding their expertise to the bookclub discussion.

 

When Vfib is Stubborn…

wall_Vfib.strip.jpg

A 56 year old male is cleaning out his garage with his wife when she hears him fall.  She turns around to find him unresponsive on the ground.  He is making gasping breath sounds but otherwise does not respond when she shakes him and yells at him.  She is instructed to perform CPR by pre-arrival instructions after calling 911 on her cellphone.  Within minutes, the BLS Fire Department arrives and takes over.  After confirming that the patient is pulseless, they resume CPR while applying an AED.   The AED states “shock advised” for ventricular fibrillation.  After resuming CPR after one shock is delivered, the ALS ambulance arrives.  High performance CPR is continued and the patient is defibrillated three more times for persistent ventricular fibrillation.  The end-tidal CO2 is 40 mmHg.   The patient has now been pulseless for almost twenty minutes.  The paramedics plan on continuing high performance CPR, but wonder what they will do if the patient remains in ventricular fibrillation with a good end-tidal 10 minutes from now…

As we have improved the care of patients in out-of-hospital arrest, many agencies are now facilitating advanced therapies for patients with refractory ventricular fibrillation.

How does your EMS system manage these patients?  Please share your comments below.  A summary of discussion points will posted to the blog at the end of the month.

Challenging the Dogma of “All Clear”: Is Hands-On Defibrillation the Next Step in Reducing the Peri-shock Pause?

by Brandon Bleess, MD EMT-T and Jeremy Cushman, MD, MS, EMT-P, FACEP, FAEMS

Case:

halfcolor.jpg

A 54-year-old male is working in his yard when he collapses to the ground and his wife calls 911.  The call is dispatched as a cardiac arrest and the patient's wife is instructed to perform CPR per pre-arrival instructions.  Upon EMS arrival, the patient is found to be  apneic and pulseless.  EMS relieves the patient’s wife and compressions are continued while the patient is connected to the monitor.  The monitor is charged prior to the next pulse check where the patient is noted to be in ventricular fibrillation.  Everyone takes the time to drop contact with the patient as the operator declares “everyone clear” before shocking and resuming compressions and ventilation.   

When debriefing the case, one of the paramedics brings up the idea of hands-on defibrillation that he attended a lecture on at a recent conference.  Is it safe to defibrillate a patient while CPR is actively being performed?

The Evidence For:

There is little question that high quality, continuous compressions improve neurologic outcomes in patients with out-of-hospital cardiac arrest.  The choice of outcome here is important: compressions are really to maintain some oxygenated blood flow to the brain in order to keep it alive long enough to get the heart started again.  All too often, ROSC is achieved but the patient has anoxic brain injury which can be a result of extended down time or ineffective compressions. 

Thus the goal in performing compressions is to minimize interruptions, for every time compressions are stopped it takes a significantly longer time to return to the flow state that existed just prior to stopping them [1-5].  With the goal of increasing compression fraction and thus improving neurologic outcomes,  the American Heart Association (AHA) began recommending charging the defibrillator during chest compressions in 2005 [6].  Multiple studies have since demonstrated that charging during compressions decreases both post- and peri-shock pauses [7-9].  These included the Resuscitation Outcomes Consortium (ROC) PRIMED trial which found that the median peri-shock pause was reduced from 21 seconds to 9 seconds with compressions during charging. This reduction in peri-shock pause lead to a significant increase in mean chest compression fraction  (0.77 vs 0.70, 95% CI: 0.03-0.11), an independent factor in increasing survival [9, 10, 11].  Thus, the traditional analyze – charge - shock pattern should be changed to charge – analyze- shock.

But can we go one step further and continue CPR during defibrillation?  After decades of “I’m clear, you’re clear, we’re all clear,” it might be time to let that go the way of the backboard in the closet of EMS dogma.  Traditionally, external defibrillation has been considered a safety hazard to rescuers and clearing the patient is an almost universal practice, but there is little data to support this notion in the age of adherent defibrillation pads [12].  Indeed, there is now evidence to suggest that hands-on defibrillation is actually safe.

How much energy is potentially transferred to the compressor during hands-on defibrillation? Defibrillators generally deliver 30-40 A of current with each shock, and the threshold for perception is 2.5-4.0 mA, and exposure becomes painful at 6-10 mA.  In healthy adults 200-500 mA of current is thought to be needed to induce ventricular fibrillation with incidence correlating linearly to increasing current [12].

Lloyd et. al. found that the amount of "leakage" (the amount of current going to the provider) in an ideal setting (outpatient cardiac electrophysiology evaluations) was well below the allowable minimum [13].  Keep in mind, this study was looking at microamps of current.  The allowable being 3,500 microamps and the leakage was an order of magnitude less than that.  To put this into further perspective, when pacing patients with transcutaneous pacing generally 60-80 mA is required for capture.  Compared to the study’s mean leakage of 283 µA or 0.28 mA, transcutaneous pacing uses over 200 times the amperage to create capture.

Neumann et al. in 2012 followed up this study by inducing ventricular fibrillation in a swine model and comparing hands-on versus hands-off defibrillation.  They found that in the hands-on group, chest compressions were interrupted for 0.8% versus 8.2% of the total CPR time (P=0.0003) and coronary perfusion pressure was restored earlier to its pre-interruption level (P=0.0205). They also found that not only was the defibrillation shock imperceptible, but the compressor wearing a cardiac monitor had no arrhythmias noted [14].

Insulating the provider from current leakage is probably one of the easiest ways to protect the compressor from harm.  This was studied by Deakin et al. in 2015 using Class 1 electrical insulating gloves while simulating hands-on defibrillation.  They found that the median current leakage was 20 μA from the 61 shocks studied, and even at 360 J the median current leakage was 27 μA.  The highest recorded leakage was 28 μA, all below the 1 mA threshold they set [15].  More recently in 2016, Wampler et al. published a study looking at perception of shocks using multiple insulating barriers, including nitrile gloves, firefighting gloves, a neoprene pad, and a manual compression/decompression device.  Out of the 100 shocks with no barrier device, all but 1 shock was not detected.  Out of 500 shocks, only 5 were detected by the compressor - none causing harm, and most importantly the CPR puck prevented any detection [16].  

The Evidence Against:

Closer evaluation of these studies may give some rescuers pause.  In the 2008 Lloyd study, 8 of the 72 phases (36 shocks, 11.1%) exceeded the 500 µA threshold [13].  In the Neumann study of 2012, the compressors wore 2 pairs of polyethylene gloves which is outside the standard practice of many providers [14]. While Deakin’s study presents some very convincing data in relation to the safety, the compressor was wearing Class 1 electrical insulating gloves.  According to the Occupational Safety and Health Administration (OSHA) regulation 29 CFR 1910.137, Class 1 gloves are rated for a maximum usage of 7500 V AC and are proof tested to 10,000 VAC and 40,000 VDC [18].  Defibrillators typically fall well below this at around 2700 V for a biphasic defibrillator. 

In 2014, Lemkin et. al. published a cadaver study where they measured the differential of the voltages at various points on the body with several skin preparations (bare, water, saline, ultrasound gel).  This allowed them to collect the resistance and exposure voltage in relation to anatomic landmarks to create a map of the providers’ exposure.  From there, they derived a formula to measure the rescuer-received dose (RRD) to represent the proportion of energy the rescuer could receive from a shock to a patient.  Their results demonstrated the rescuer-exposure could exceed 1 J in any location at some energy level, and reached as high as 9.4J on the anterior chest wall [17].  The argument made is that 1 J could potentially cause a provider to be shocked into ventricular fibrillation themselves.  Since this does not include any barriers, it would apply if there was a large tear in the glove or the rescuer was contacting the patient without any gloves.

Conclusion:

While the literature suggests that hands-on defibrillation is safe, it should occur at the discretion of the compressor who should consider wearing two pairs of gloves or utilize both gloves and a CPR-feedback device if performing the procedure.  There are no studies that have measured the effect of this on clinical outcome, although it is postulated that increased compression fraction is a useful surrogate.  At minimum, the charge-analyze-shock method should be used during every defibrillation to minimize the hands-off time and increase the compression fraction.

author_bios.001.jpeg

For additional Resources, REBEL EM published the following review of Hands-On-Defibrillation: CPR Hands-On or Hands-Off Defibrillation

EMS MEd Editor:  Maia Dorsett (@maiadorsett)

References:

1.     Berg RA, Sanders AB, Kern KB, et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation. 2001 Nov 13;104(20):2465-70.

2.     Cunningham LM, Mattu A, O’Connor RE, Brady WJ. Cardiopulmonary resuscitation for cardiac arrest: the importance of uninterrupted chest compressions and cardiac arrest resuscitation. Am J Emerg Med. 2012 Oct;30(8):1630-8.

3.     Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990 Feb 23;263(8):1106-13

4.     Hazinski MF, Nolan JP, Aicken R, et al. Part 1: executive summary: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132(16)(suppl 1).

5.     Neumar RW, Shuster M, Callaway CW, et al. Part 1: executive summary: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132(18)(suppl 2).

6.     2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2005;112:IV1–IV203.

7.     Perkins GD, Davies RP, Soar J, Thickett DR. The impact of manual defibrillation technique on no-flow time during simulated cardiopulmonary resuscitation. Resuscitation. 2007;73:109–114.

8.     Edelson DP, Robertson-Dick BJ, Yuen TC, et al. Safety and efficacy of defibrillator charging during ongoing chest compressions: a multi-center study. Resuscitation. 2010;81(11), 1521-1526.

9.     Cheskes S, Schmicker RH, Verbeek PR, Salcido DD, Brown SP, Brooks S, Menegazzi JJ, Vaillancourt C, Powell J, May S, et al. The impact of peri-shock pause on survival from out-of-hospital shockable cardiac arrest during the Resuscitation Outcomes Consortium PRIMED trial. Resuscitation. 2014 Mar; 85(3):336-42.

10.  Christenson J, Andrusiek D, Everson-Stewart S, et al. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation. 120 (2009), pp. 1241-1247.

11.  Cheskes S, Schmicker RH, Christenson J, et al. Peri-shock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation. 124 (2011), pp. 58-66.

12.  Brady W, Berlat JA. Hands-on defibrillation during active chest compressions: eliminating another interruption. Am J Emerg Med. 2016 Nov;34(11):2172-2176.

13.  Lloyd MS, Heeke B, Walter PF, Langberg JJ.  Hands-on defibrillation: an analysis of electoral current flor through rescuers in direct contact with patients during biphasic external defibrillation. Circulation. 2008 May 13;117(19):2510-4.

14.  Neumann T, Gruenewald M, Lauenstein C, Drews T, Iden T, Meybohm P. Hands-on defibrillation has the potential to improve the quality of cardiopulmonary resuscitation and is safe for rescuers—a preclinical study. J Am Heart Assoc. 2012 Oct;1(5):e001313.

15.  Deakin CD, Thomsen JE, Løfgren B, Petley GW. Achieving safe hands-on defibrillation using electrical safety gloves—a clinical evaluation. Resuscitation. 2015 May;90:163-7.

16.  Wampler D, Kharod C, Bolleter S, Burkett A, Gabehart C, Manifold C. A randomized control hands-on defibrillation study- Barrier use evaluation. Resuscitation. 2016 Jun;103:37-40.

17.  Lemkin DL, Witting MD, Allison MG, Farzad A, Bond MC, Lemkin MA.  Electrical exposure risk associated with hands-on defibrillation. Resuscitation. 2014 Oct;85(10):1330-6

18.  https://www.grainger.com/content/qt-electrical-safety-gloves-inspection-262