EMS MEd Blog

Article Bites #13: How Often Do They Get More Than One? Naloxone Redosing in the Age of the Opioid Epidemic

Klebacher R, Harris MI, Ariyaprakai N, et al. Incidence of Naloxone Redosing in the Age of the New Opioid Epidemic. Prehosp Emerg Care. 2017;21(6):682-687.

Background & Objectives:

The surging opioid epidemic has largely been combated with the use of intravenous and intramuscular naloxone administration. More recently, intranasal naloxone has been shown to be easily administered by not only EMS providers, but also law enforcement and family members to help reverse potentially fatal overdoses. Recently, mixed overdoses and ingestions with far more potent agents (such as carfentanyl) are on the rise, necessitating repeat naloxone dosing. The primary objective of this study was to determine the incidence of repeat naloxone administration for patients with suspected opioid overdose. The secondary endpoint was a more detailed descriptive and statistical analysis evaluating the precise characteristics associated with individuals who required repeat naloxone dosing.

Methods:

The investigators conducted a retrospective chart review of the electronic health record of the largest EMS service in New Jersey. Charts were searched for the presence of naloxone administration and other key words including “drug overdose”, “poisoning” and “unresponsive”. Charts were examined between April 2014 and June 2016. In order to be included in the study, patients had to be over the age of 17 years and administered an initial dose of 2mg of intranasal naloxone. Initial naloxone administration was performed by law enforcement or a BLS unit per New Jersey state regulations. Subsequent doses of naloxone were administered by ALS units.  Resolution or “response” to therapy was defined as GCS of 15. In addition, demographic data was extracted from each patient encounter. 

p2253.png

Key Results:

In total, 2,166 patients received naloxone for suspected opioid overdose during the study period) April 2014 to June 2016). The key results from the study were as follows:

  • 1,971 of 2,166 (91%) of patients had reversal of overdose symptoms after a single dose of naloxone administered by law enforcement or BLS units 

  • 195 of 2,166 patients (9%) required a second dose of naloxone by an ALS unit given failure to respond after the initial dose

  • 53 of 2,166 patients (2.4%) required a third dose of naloxone by an ALS unit

  • Patients who required a second dose of naloxone had a mean GCS of 5.3 (standard deviation of 3.7). The mean respiratory rate was 10.4 breaths per minute with a mean oxygen saturation of 86.8%. 

  • Patients who required a third dose of naloxone had similar mean GCS scores (4.9) and oxygen saturations (86.4%). Two-thirds of the 53 patients who received a third dose of naloxone improved to a GCS of 15, suggesting that the remaining 1/3 patients may have had an alternative diagnosis for their altered mental status.


Takeaways:

  • Among patients with suspected opioid overdose treated with intranasal naloxone by first responders or ALS units, 91% of patients had complete reversal of symptoms after a single dose of naloxone, with 9% requiring repeat dosing.

  • Naloxone is overall very effective at reversing symptoms of opioid overdose after a single dose

What this means for EMS:

With the rising incidence of mixed ingestions, more potent opioids such as carfentanyl, EMS providers are faced with more complexities in the management of opioid overdose. This study suggests that, in addition to basic support of ventilations, naloxone is still the mainstay of management in these patients, and highly effective at reversing overdose symptoms. Furthermore, this study suggests that in the majority of cases, first responders including law enforcement, and BLS units may be able to safely manage opioid overdose without the need for ALS units. This may improve resource utilization in EMS systems that are already stretched very thin. 

Article Summary by Al Lulla, MD (@al_lulla)

Article Bites #12: The Profile of Wounding in Civilian Public Mass Shooting Fatalities. 

Article: Smith ER, Shapiro G, Sarani B. The profile of wounding in civilian public mass shooting fatalities. J Trauma Acute Care Surg. 2016;81(1):86-92.

Background & Objectives:

Civilian mass shootings are unfortunately on the rise and afflict the lives of many individuals and their families. Given the rising incidence and severity of these events, there has been much in the way of public initiatives at improving morbidity and mortality in individuals who have been critically wounded. Much of the prior emphasis on management of these patients in the prehospital environment has focused on external hemorrhage control with widespread education on use of tourniquets. The strong focus on civilian management of exsanguinating extremity hemorrhage during mass shootings is largely based on the blast injury patterns identified during the US operations in Iraq and Afghanistan which suggest that between 52% and 64% of injuries in combat are to the extremities. Whether these lessons translate to civilian mass shootings is unclear. The overall purpose of this paper was to precisely identify the anatomic wounding pattern, fatal wounds and incidence of potentially survival wounds in civilian mass shooting incidents. 


Methods:

The investigators conducted a retrospective study evaluating autopsy reports performed by medical examiners or coroners in 12 different mass shooting events. The investigators utilized the term “mass shooting” as defined by the FBI to mean:

  1. An incident occurring in a public space with 4 or more deaths (not including the shooter);

  2. Gunmen who select victims at random

  3. Violence without means to an end (i.e. not associated with robbery

Using reports made available by the New York Police Department and the FBI that provide detailed descriptions of civilian mass shootings dating back to 1966, the investigators identified 78 events that met the above definition for mass shooting events. 56 events that met the above definition had medical examiners or coroners that could be contacted. If the medical examiner or coroner was not listed or they could be not be contacted, the mass shooting event was eliminated from analysis. Request for official autopsy reports were sent to the respective examiners/coroners. Based on these reports, data was compiled regarding body site of wound, type of injury, probable site of fatal injury and whether wounds were potentially survivable. 

Key Results:

In total, based on responses from medical examiners, a total of 12 mass public shooting events were analyzed in the study. A total of 139 fatalities with 371 total wounds were examined by the investigators. The key results from the study were as follows:

  • There was an average of 2.7 wounds associated within the group of fatalities

  • The case fatality rate for civilian mass shootings was 44.6% (compared to approximately 10% during Operation Iraqi Freedom and Operation Enduring Freedom as reported in other studies). 

  • 58% of all victims (with fatal and non-fatal wounds) had at least one wound to head or chest/upper back

  • 20% (28/139) of all wounds were to the extremity, of which none were deemed to be fatal

  • 77% of all fatal wounds were identified in the head or chest/upper back. 

  • In total, only 9 of the 125 fatalities or roughly 7% (14 excluded given absence of autopsy data) were determined to be potentially survivable 

  • The most common survivable injury was a wound to the chest (89% of all survivable injuries) without obvious evidence of vascular or cardiac injury

  • There was 100% agreement between the reviewers of the study regarding potential survivability of injuries

Profile_mass_Shooting.jpg

Takeaways:

  • Only 7% of victims in civilian mass shootings had a potentially survivable wound. No fatalities likely occurred secondary to exsanguination from extremity hemorrhage

  • The majority of wounds in civilian mass shootings occur primarily in the head, chest/upper back compared to combat environments where the majority of wounds occur in the extremities. 

  • The case fatality rate for civilian mass shootings compared to military data was much higher, and associated with lower number of potentially survivable injuries 

What this means for EMS:

While our nation faces a crisis with the issue of gun violence at the forefront of public discourse, regardless of what stance one may take on this issue, one thing remains abundantly clear: EMS providers are front and center when it comes to management of victims of mass shootings in the field. Historically, much of the focus on managing victims of mass shootings has been based on Tactical Combat Casualty Care (TCCC) guidelines based on the US military conflicts on the battlefields of Iraq and Afghanistan. These guidelines are largely predicated on the management of exsanguinating extremity hemorrhage with the use of tourniquets. This study despite all its limitations including retrospective design, missing data, and possibility of miscategorization of survivable and non survivable injuries, calls into question the applicability of these findings to the civilian arena where body armor is not worn. Based on the results of this study, EMS providers on the front lines who bravely care for victims of civilian mass shootings may encounter patients with wounding patterns that differ significantly compared to those seen in combat. While there is no question the importance of training and implementation of easy interventions such as tourniquets for the management of extremity hemorrhage, perhaps EMS providers must have a broader implementation of other treatment strategies that more accurately reflect the injury profile seen in civilian mass shootings, such as penetrating chest trauma. The authors of the present study carried out a more recent analysis looking at the victims of the Pulse nightclub shooting in Orlando, FL. The findings of this newer study which examined this single event (versus the 12 events in the examined in the present study) identified a disproportionately higher rate of individuals with extremity wounds (90% versus 20%). In this newer study, 4 patients were determined to have preventable death secondary to extremity hemorrhage (or in this case, junctional hemorrhage in the axilla). These patients who died did not have any evidence of tourniquet application, further emphasizing the point that despite the overall low incidence of death from extremity hemorrhage in mass shootings, it remains a quick and easy intervention that has the potential to save lives. The authors further concluded that in the Pulse nightclub shooting, similar to the 12 prior incidents, the majority of fatalities were again secondary to torso injuries highlighting the need for other interventions such as decompression of tension pneumothorax, basic airway management and management of hypothermia, which likely play a critical role in improving the dismal survival rates associated with civilian mass shootings. 

References:

  1. Smith ER, Shapiro G, Sarani B. Fatal Wounding Pattern and Causes of Potentially Preventable Death Following the Pulse Night Club Shooting Event. Prehosp Emerg Care. 2018;22(6):662-668. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29693490


Summary by Article Bites Editor, Al Lulla MD (@al_lulla)

BSI, Scene Safe: Debating the Personal Protective Equipment of Today

by Noah Tyler, EMT-P

Peer Review by Aurora Lybeck, MD

We’ve all seen the news stories and videos: Mass shootings, violent gang activity, and targeted assaults on first responders are on the rise.  Fortunately, bullet and stab resistant vests have been effectively protecting most of our law enforcement officers for years.

Vest_image_processed.jpg

Today, we see EMS personnel wearing ballistic armor to every call.  But wait a minute… we’re medical people, not one of those proverbial sheepdogs who protect the flock.  Is this overkill for EMS?  Are we addressing a blatant disregard for scene safety with a quick fix instead of education?  Are “tactical paramedic” ambitions jousting towards Don Quixote’s windmills?  Aren’t most violent or weapons-related responses contained and controlled by law enforcement long before paramedics step foot on scene?  They are in Lubbock, Texas… we call it “staging” in the area.  So why are we wearing ballistic vests for body armor?

A little history: A few years ago, our hospital-based EMS recognized the increasing rate of violence within Lubbock and began considering options to protect our EMS personnel without impeding patient care.  Our agency acknowledged that just like in the rest of the country, there were shootings, stabbings, and mass casualty threats within our city of nearly a quarter of a million people.  That said, we also had a strong, dedicated police force to keep us safe and we worked well together. 

Now jump ahead to 2018 --- Our hospital purchased ballistic vests for every field EMT, paramedic, and supervisor within our service.  It was not a strategically-planned and targeted weapons attack that brought about this change in protection.  There was no conflict or concerns about police protection for our staff.  Instead, it was the enormous rise in synthetic cannabinoid and bath salt abuse from 2013-2017 and the subsequent rise in calls for excited delirium, where we were confronted with patients who could not even be controlled with our standard sedation drug, Midazolam (Versed).  Small foil packets of tainted grass and other dried vegetation - something innocently named “Scooby Snax”, “Breeze”, or “Mr. Happy Potpourri” - sold for just $5 at the local smoke shop were presenting risk of serious injury to not only patients, bystanders, law enforcement, but our EMS personnel as well. 

uniform_pic.jpg

Intramuscular ketamine quickly became our medication of choice to protect and tame the patient, as law enforcement was not always deployed for our scene safety needs as these 9-1-1 calls may have come in as an unknown medical, vomiting, seizures, or check welfare.  We saw a need for ballistic vests to protect ourselves from the weapon threats usually involved in these patient encounters. 

With multiple raids on smoke shops, improved legislation on synthetic cannabinoid sale and prosecution, and targeted efforts by Lubbock police working with state and federal agencies, the synthetic epidemic finally tapered down.  But Lubbock’s population was increasing and as with any growing city in the US, the rate of violence was on the rise.  Two of our EMS stations were shot at in a single night – fortunately, no one was injured.

Improved dispatch algorithms for EMS and law enforcement evolved and police were responding to the suspected weapons calls and now more potentially-violent excited delirium patients.  2018 seemed safer, so again, do we really need all of that expensive body armor?

The ball was already rolling through the finances department and UMC approved the purchase of the armor.  Our EMS staff started wearing the lightweight ballistic vests for those just-in case encounters with a violent, armed patient or questionable scene.  While the past history of violent events led to body armor use, we soon discovered a previously-unrecognized benefit in our daily meat-n-potatoes type responses.

One of our frequent 9-1-1 requests is the “check welfare” call where a friend or family member has not heard from an elderly parent, college-age son, or friend with an extensive medical history in several days.  Most of these concerned callers are living in another city or state and can’t just drive and check on the individual.  Or, a home medical alarm company contacts EMS for an elderly person who has fallen and is unable to stand back up.  These encounters are usually not a safety threat and we prefer to preserve our law enforcement resources for more pressing needs. 

There is something unique about Texas though, and particularly in the western part of the state: It seems that just about every man, woman, and child owns a gun.  Yes, even in Texas, a child can legally own (but not purchase) a gun.  Most individuals are responsible gun owners, and it’s not uncommon to walk into a home and see a locked steel gun safe weighing hundreds of pounds sitting in a corner of the bedroom.  But, Texas paramedics and EMTs don’t suddenly run out of the house screaming, “scene safety!” --- in contrast, it usually spurs a conversation about the gun collection and an exchange on the latest wisdom about hunting rifles.  Having trouble with small talk for assessing decisional capability?  Start with a few words about the upcoming deer season or wild hogs tearing up the farm fields and you won’t have to say a word.  Your patient will do all of the talking.

So, going back to body armor: Are these hunters trying to kill our paramedics?  Absolutely not.  Instead, the ballistic vests find their value in the unexpected encounters.  For example, we responded to a “check welfare” call where the out-of-state son was concerned about his father with recently-diagnosed mild dementia.  His father is highly-functional and lives at home with occasional visits from friends and community health partners.  The son frequently calls his father to check up on him, but this time he did not answer the phone so the son called 9-1-1.  We arrived on scene and knocked on the door, which happened to be unlocked --- another west Texas behavior.

While entering the residence, we announced ourselves as EMS and heard no response, so we cautiously continued into the home.  As we entered the hallway, a frail elderly man was found frantically rolling his wheelchair down the hall.  His eyes were fixated on the doorway behind us and he wouldn’t respond to our questions.  He didn’t seem to understand our role or purpose and instead was intent on pushing past to the door behind us.  As I glanced behind me, I saw exactly what he was driving towards: A double-barreled shotgun resting on the door post.  He was exerting every effort towards getting his hands on that weapon because in his mind, two intruders were in his home and they were the threat. 

Dementia is a horrible disease.  His case was supposed to be mild, but when coupled with an acute urinary tract infection that altered his mental status, he was doing exactly as we should expect him to do.  He was protecting his life and his home, responding instinctively as any normal Texan would confronting a home invasion.  I was able to secure the weapon before he reached the doorway and eventually calmed him, but what if his hands got to it first?  What if shots were fired just as we entered the doorway earlier?

Another response involved a call for diabetic complications out in a more rural area of the county.  In this case, we arrived to find the front door wide open and obtunded patient sitting in the hallway.  His blood glucose level was 30 mg/dL, and while occasionally agitated, he didn’t appear to be an immediate threat.  Just your standard-issue hypoglycemia call near the “passed out” stage with a known diabetes history.  While administering the IV dextrose solution (D10W), I noticed that house was in disarray, in need of a lot of repair, and it looked like candy was scattered across the floor --- he must have been aware that his blood glucose was dropping but couldn’t fix it on his own soon enough.

My partner was looking for a medical history or medications list in the house, and he stepped out of the nearby bedroom saying, “You need to see this”.  We changed places and as I walked into the bedroom, I saw well over 80 bullet holes in the ceiling, walls, and furniture.  Handguns and rifles were strewn across the bed and floor.  I immediately requested law enforcement and as they arrived, the patient regained most of his mental status.  He was calm, confused about our presence, but then remembered: He knew his blood glucose was dropping and dropping fast.  Decades of his difficult-to-control diabetes also taught him that he’d soon lose his ability to make sound decisions and didn’t want to harm anyone.  He emptied his weapons, but by that time, his brain chose the most unconventional method. 

Guns and other weapons are not the only threat.  The human body is a formidable weapon in itself.  The ballistic vests have protected our personnel from injuries that previously were once accepted as “part of the job”.  Physicians, nurses, and emergency center staff know these risks and injuries well.  Hypoglycemia, stroke/brain injury, medication effects, or drug/alcohol abuse can turn an otherwise pleasant individual into a kicking, screaming, biting, fighting weapon of pain.  Trying to bathe a cat would be a breeze in comparison.  The ballistic vests perform remarkably well in blunting the kicks, fists, and even bites towards our core.  These are the potential injuries that can be most disabling for us on scene and risk our safety. 

I offer the experience and scenarios not to boast on “war stories” or to instill fear towards every patient encounter.  But as we’re taught in our EMS classes and usually soon forgotten, every response has a potential for violence – intentional or not.  Complacency can be fatal, but at times we also face situations where the risks will never be discovered until it’s too late. 

The individual decision to use body armor is a personal one.  Some of our personnel see it as important as donning gloves with every call.  Others bring their vests into the ambulance every shift as required by policy, but only wear them during known weapon-involved calls.  While every paramedic or EMT is entitled to their own decision to use or not use their vest, it must be an informed one.  Body armor’s role is more than protection from bullets and knives during a targeted attack.  It’s the everyday calls: The daily hypoglycemia response, substance abuse, brain injury, or even delirium from untreated acute illness. 

As experienced providers and mentors, we should instill a culture of safety that embraces the wisdom offered by author and speaker Simon Sinek: “Leadership is absolutely about inspiring action, but it is also about guarding against mis-action.”  The action is convincing decision makers that body armor investment for EMS personnel is necessary, while mis-action leads us to assume it’s only valuable for known weapon calls.  Consider alternative scenarios to protect yourself and your partner from preventable, disabling injury that in just a moment of time, could destroy your career and livelihood if not life itself.

 

Response & Commentary

Mark Philippy, EMT-P

I read with great interest the article regarding the wearing of ballistic and protective vests in EMS.  This is something of a timely topic, as one of the committees I serve on in New York has this on our agenda as an item of discussion.  We have wrangled with the notion of creating a best practices document to help EMS agencies in our state address the need for, and deployment of, ballistic vests.  Some areas of the state have been able to move ahead in various ways to provide partial deployment, mostly of threat-level four plate-carrying vests for tactical environments, but few have delved, officially, into daily-wear vest systems.

First, I’d like to be transparent about some of my own biases and experiences. 

Among the proudest and happiest days in my life were the first day I put a bullet-resistant vest on – my first day out of the police academy, and the last day I took it off – the day I retired from police work.  For 23 years I wore the vest religiously, even though, at the time I started in 1990, it was not required for daily wear as a police officer.  There were those in my department who resisted mandatory vest wear, despite the fact that they carried a firearm into every single encounter they ever had with a citizen – a weapon that could potentially be turned against them.  Yet by the time I left, it was not even a second thought – the vest went on before the uniform.

Having said that, I hated it, too.  It was hot, bulky, stiff, and any time I got into any kind of tussle, I spent a good 20 minutes trying to get it seated right and getting my uniform tucked back in (I’m a bit challenged in that regard, I admit).  When agencies such as the Chicago Police Department first started testing the outside vest carriers that looked like uniform shirts, I cheered, hoping it would someday make it to my department (it didn’t, at least not before I retired).  I worked bicycle patrol for a number of years and I lost more weight from sweating than I did from the exercise.

Now look at the EMS side of things.  In the time that I worked in the City of Rochester, my ambulance had been shot at twice, I had been punched, kicked, bit, and threatened with stabbing, all the while (stupidly, I agree) walking right in with the local police on things that today, we’d stage down the block for until cleared into the scene.  At the same time, I scoffed at those medics who wore bullet-resistant vests.  Why?  Because it was my observation that those who did, immediately seemed to get into more trouble than they had before.  Likewise, it seemed the people who got into trouble were the first ones to put a vest on. 

By trouble, I mean those few (and we all know them) who managed to rile up every patient with a mental health issue, seemed to draw crowds around themselves at inopportune times, and got more than their fair-share of personnel complaints.  These were often the folks whose chest seemed to puff out a little too much, and who seemed to feel they could take on the world single-handedly.  I worried for them, and about their partners, all the time.

Fast-forward to 2019.  I cannot agree more with the author that things are violent and dangerous.  I don’t know that I would agree they are any more so than 30 years ago, when crack cocaine was rearing its ugly head, and excited delirium was still called “cocaine psychosis.”  But we are more aware, and we are busier, and so are our law enforcement partners.  So the danger may be more visible, in-your-face, not to mention we may be much more aware of it through social media and information sharing.  So where is my concern?

First of all, what is the purpose of wearing ballistic or edged-weapon protection?  I’m loath to bring up what events transpired in my region some not-so-distant years ago (particularly since it involved a friend and colleague), but in that instance, ballistic vests would not have been of benefit.  Yet immediately after that incident, fire departments around the region and the country started talking about buying ballistic vests.  My question then as now is, why?  When will you wear them?  Will you put them on under your turnout gear?  Will you wear them on every call all the time?  If you’re a career firefighter or EMS provider will you wear it all the time, over or under your uniform?

What does that mean for you, and for your practice?  Because I see a good number of people (and police officers now, which irritates me to no end) wearing outside-carry vests festooned with pockets and carry points.  So the uniform is no longer the first thing a patient sees.  It’s the ballistic vest.  We might no longer present the image of primary caregivers, but perhaps be easily mistaken for police.  They are bulky, catch on things, and yes, you can take them off, but they still get hot when they’re on, which for practical purposes, should be most of the time.

Let’s talk about under-uniform vests then.  For threat-level II or III (and their progeny, IIA and IIIA) vests, under the uniform wear makes sense.  It is less intrusive, less visible, and depending on what style is purchased, can be integrated with stab-resistance and water repellency.  They are also hot, stiff, and make movement about inside an ambulance, or incident scene, challenging.  Uniforms will be untucked and it will be annoying, but you can work through that.  The thing to watch out for is the feeling of increased protection morphing into a sense of improved invulnerability.  And thence, potentially, increased risk-taking.

What else?  Cost.  Who bears the brunt of that?  The author was fortunate to have a hospital system than was progressive and financially positioned to purchase these, but what about municipal, commercial, not-for-profit, and volunteer agencies?  Medicare reimbursements being what they are, we are all holding on by a thread just to upgrade aging cardiac monitors and keep ambulances running.  While taking care of our people should be foremost in company leadership’s mind, does that extend to providing this level of protection?

In the law enforcement world, the National Institutes for Justice realized early on that the benefit of protective bullet-resistant vests warranted federal subsidy.  For every year that I was on the job, my vest was partially, and in some cases wholly, funded through federal grants.  Are those same grants or funding streams available for fire and EMS personnel?

The author points out that it is important for people to make informed decisions about wearing vests.  So let’s talk about some limitations and considerations.  If you have to buy a vest, I return to the question of what threat level?  What are you protecting against?  Small arms, rifles, close range, far away?  Of much more concern to me is, frankly, edged weapons.  However most bullet-resistant vests do not protect adequately from stabbing, thus Corrections’ use of SpectraTM and similar materials in stab-resistant vests.  There are those manufacturers who incorporate both (I had one for Bike Patrol) but they are increasingly expensive.  So cost and type of protection are key factors in this decision.  And I submit few EMS providers, let alone agency leaders, are knowledgeable enough to make these choices, so if you are considering it, best do your research or find yourself a subject matter expert to help.

What about moisture?  KevlarTM and TwaronTM fabrics, which make up the bulk of bullet-resistant vest manufacture, are susceptible to becoming soaked through, at which point they lose some or most of their ballistic integrity.  This was one reason I chose to use a combined Spectra/Twaron vest for bike patrol.  EMS providers are often in the rain, and sweating in cramped, semi-conditioned environments, so how effective will your protection be when the time comes?  As a police officer, I had the luxury of being able to go back to my station and swap carriers, keeping my car air conditioned, and making darn sure I wore a raincoat when I was outside for a period of time (most of the time, anyway).  That has not always been the case as an EMS provider.

What about training for the intended user?  How much training do EMS providers have in the limitations, care, and replacement of bullet-resistant vests?  I was acutely aware of the fact that I had a huge open area under my armpits that was not protected.  It was never so apparent as when I wore a short-sleeve shirt in changing weather, and could feel the cold air rush up my arm while in a standard bladed stance addressing a potential adversary.  Do EMS providers know how to stand to maximize their ballistic protection?  Do they know how far down the vest goes, or doesn’t go, to protect their abdomen, and their sides?

Up to this point I’ve somewhat danced around the issues of why we should wear the vest, and written about the challenges and considerations.  I don’t think anyone can argue, with any kind of standing, that there is not a place for bullet-resistant and edge-weapon protective vests in the EMS environment.  I do believe that there are a good number of considerations that must be addressed before anyone lays a hand on one, or picks up the thread to start obtaining them.  The author makes excellent and valid points about the ancillary protective benefits of the vests, from blunt attacks to motor vehicle crashes.  I know of a friend who avoided a serious spinal injury during a crash because his ballistic vest acted much like a KED.  But when we talk about “lightweight ballistic vests,” let’s make sure we’re talking apples and apples, and not Kevlar and Spectra.

Finally, I agree with the author that there is a particular lack of situational awareness (Oh, how I hate that term!) in EMS today.  It is getting better, and there are a number of good programs across the country trying to improve not only provider safety awareness, but EMS defensive tactics (shout out to Kip Teitsort and the folks at DT4EMS).  I posit that we should be spending our hard-won funds in this area before we invest in protective vests.  Then, and only then, can we fully understand the threat, and address the use of protective equipment effectively.

Bios.001.jpg

EMS MEd Editor, Maia Dorsett MD PhD (@maiadorsett)

Trouble in Thin Air: Responding to Inflight Medical Emergencies

By Mark Liao, MD, NRP (@EMSFellowMark)

Peer Reviewed by Jeremiah Escajeda, MD (@JerEscajeda)

thumbnail_crop.jpg

Clinical Scenario:

As you settle into your seat on a cross-country airline flight to yet another Emergency Medicine conference, you hear the familiar Hi-Low tone signaling an announcement. Suddenly a pressured, yet professional, voice booms overhead: “If there is a medical professional on board the aircraft, would you please contact a member of the cabin crew?”  You pause for a moment and do a mental size up – what exactly would I be able to provide? Am I protected legally? What equipment is on board? The uncomfortable realization that you may be on your own – at 35,000 feet – quickly settles in as you unbuckle your seat belt and walk to the nearby galley.

Review:

Legacy Emergency Medical Kit prior to the 1998 Aviation Medical Assistance Act

Legacy Emergency Medical Kit prior to the 1998 Aviation Medical Assistance Act

Medical professionals such as EMS providers and physicians have always been aware that they may be called upon to respond as Good Samaritans in the event of an off-duty emergency. Aviation in-flight medical emergencies are uncommon events, with estimates ranging widely from 1 event every 40 flights to 604 flights or up to 10-40 events every 100,000 passengers [1-3]. The variation in estimates are due to the lack of a central registry with most studies relying on proprietary company data from either the airlines or a ground-based aeromedical consultation service.  Common in-flight medical events include syncope/near-syncope, GI complaints, respiratory problems and cardiovascular emergencies. Cardiac arrest is rare, with one review showing it represented only 0.3% of all inflight medical events [4].

Fortunately for potential first responders, the United States 1998 Aviation Medical Assistance Act provides generous legal protections for American air carriers:

Current emergency Medical Kit that meets minimum FAA Part 121 EMK requirements

Current emergency Medical Kit that meets minimum FAA Part 121 EMK requirements

An individual shall not be liable for damages in any action brought in a Federal or State court arising out of the acts or omissions of the individual in providing or attempting to provide assistance in the case of an in-flight medical emergency unless the individual, while rendering such assistance, is guilty of gross negligence or willful misconduct [5].

 The same law also updated required equipment on board commercial civil aviation aircraft in the United States. A scheduled air carrier – which the FAA calls a Part 121 Operator – is what most passengers fly in the United States. If a Part 121 aircraft has at least one flight attendant on board, the aircraft is required to have an Emergency Medical Kit (EMK), Automated External Defibrillator (AED), general first aid kit, bloodborne pathogen spill equipment and oxygen for first aid (if the aircraft operates above 10,000 feet) [6]. All Part 121 cabin crew in the United States are required to receive first aid and CPR/AED training, with demonstration of CPR/AED skills every 2 years, in addition to being familiar with the location of equipment on board the aircraft [7]. However, cabin crew education on obtaining vital signs or performing a physical exam is not required by regulations.   

 

Preparing to Respond

Above: An example of an in-flight patient care form

Above: An example of an in-flight patient care form

Each airline dictates their own policy on identifying potential medical volunteers and may request professional identification. Some international airlines – such as Japan Airlines, Lufthansa, SWISS and Austrian Airlines – maintain a registry of physician passengers who can be called on to render assistance if needed [8,9]. Medical volunteers, such as physicians who choose to respond should not have consumed alcohol prior to rendering care or otherwise be impaired [10]. Many airlines across the globe are contracted with an aeromedical ground support service, such as MedLink (located in Arizona) or Stat-MD (located in Pennsylvania) that provides physician consultation and helps the flight crew determine if diversion is necessary and assists cabin crew and volunteers with passenger medical care. They also perform ground based medical evaluations of patients if there is a concern that arises as to whether the patient is medically suitable to fly on a commercial flight. The ultimate decision for diversion rests with the pilot-in-command who will use the ground-based physician service and possibly inflight medical volunteers to assist in making the decision. Diversion is very costly and airlines attempt to avoid medically unnecessary diversions. Given the unique considerations of the aeromedical setting, suitable airports and local available services, medical volunteers should defer to the recommendations of the ground physician. Communication with the ground physician may take place with in-cabin headsets, telemedicine equipment or relayed through the flight deck.  Some airlines – particularly those flying long-haul routes – have also elected to equip their aircraft with patient monitors that integrate voice communication, video, EKG, pulse oximetry, temperature and other parameters that can be transmitted to the ground physician, though these are rare to find on domestic US operations [11]. Airlines will ask that volunteer help complete documentation for care that is rendered.

 

Vital Signs

Figure4.jpg

The only FAA required vital signs equipment in an EMK is a stethoscope and blood pressure cuff. Auscultation of breath sounds and blood pressure can be challenging due to engine noise and vibration. As such, blood pressures may need to be palpated. Pulse oximeters, while not required by regulations, are sometimes added to EMKs, although providers should be aware that the effects of altitude may cause normal changes in oxygen saturation. While oxygen saturation at sea level is approximately 97%, decreased oxygen tension at altitude will reduce this saturation value. Most civilian airlines are pressurized to maintain a cabin altitude of approximately of 6,000 to 8,000 feet: at 8,000 feet a normal oxygen saturation will be approximately 93% [12]. 

 

IV and Medication Administration

 

Figure5.jpg

The EMK is required to stock a limited amount of parental medication equipment and includes one IV tubing set with Y-connectors, 500cc of normal saline, 5cc and 10 cc syringes in addition to medication needles. As many EMKs utilize vial or ampoule epinephrine instead of an epinephrine autoinjector, 1cc syringes are also included. Curiously, the FAA did not specify the type or quantity of intravenous catheters to be equipped, thus leaving the decision up to the airlines or their EMK vendor. The author has seen as few as two 16-gauge IV catheters to a more generous set of one 18, 20 and 22 gauge IV catheters.

 

Airway and Ventilation Support

Figure6.jpg

 Basic airway adjuncts are included in the kit and at a minimum must include a bag-valve resuscitator (regulations do not specify what size), 3 sizes of oral airways and masks (pediatric, small adult, large adult) and CPR masks of equivalent sizes. The EMK presented above met these requirements by providing three mask sizes that could be either used with the adult bag mask resuscitator or a one-way CPR valve. Oddly, there is no requirement for the equipped bag-valve resuscitator to have oxygen tubing that is compatible with the aircraft portable oxygen bottle outlets.

 

Portable aircraft oxygen bottles, unlike those found in medical settings, are generally equipped with only two settings, low (2 liters per minute) and high (4 liters per minute). For these types of bottles, applying the mask adapter into the appropriate rate connection outlet will determine the flow rate.

A bronchodilator is also required as part of the EMK. A spacer, which is not required to be equipped, may need to be improvised using a toilet paper roll, rolled-up magazine or plastic bottle when treating children [13].

Figure9.jpg

Syncope

Based on previous literature, near-syncope and syncope comprise the majority of inflight medical emergencies. This condition, although frightening to the crew and other passengers, rarely requires IV administration or diversion. Simple maneuvers such as laying the patient supine, with legs elevated and applying oxygen, for the most part, are all that is required [2,4].

 Nausea/Vomiting

 Antiemetics are not required to be equipped in the EMK despite nausea and vomiting being a common inflight medical event. Although carrying antiemetics while traveling is advisable, it should be noted that serotonin receptor antagonists, such as ondansetron, are not effective for motion sickness [14]. Alternatively, the EMK does carry diphenhydramine which can be used off-label as an antiemetic. It is also reasonable to request if other passengers may be carrying over the counter antiemetic medications. 

 Cardiac Emergencies

Figure10.jpg

The EMK provides four 325mg of aspirin and at least 10 tablets of nitroglycerin. There is no requirement to include a single or 3-lead EKG as part of the equipment, though some airlines include this as a stand-alone device or optional attachment to the on-board AED [15].

 


Cardiac Arrest and Resuscitation Management

Figure11.jpg

In addition to the on-board Automated External Defibrillator, the EMK provides two doses each of 1mg atropine and 1mg epinephrine. A total of 200 mg of lidocaine is also required. Despite the provision of antiarrhythmics, there is no requirement for airlines to ensure that the equipped AED has a screen that permits the user to see the underlying cardiac rhythm.  Due to space constraints within the cabin, patients in cardiac arrest may need to be moved or dragged to the galley or a bulkhead row to ensure enough space is provided to render effective CPR. Ending resuscitation can be challenging and consultation with the ground physician is advisable.

 Allergic Reactions and Anaphylaxis

Figure12.jpg

 Diphenhydramine in both oral and injectable forms are provided in the EMK, with four 25mg tablets and two 50mg vials.  Two ampoules of epinephrine 1mg/mL (1:1000) must also be equipped. Some airlines have included epinephrine autoinjectors as part of their EMKs, but this is not required by regulations.

 



Diabetic Emergencies

Figure_13.jpg

A total of 25 grams of injectable dextrose is equipped in the EMK, though there is no requirement for a glucometer or lancets. If a glucometer is needed, one option is to ask the cabin crew to make a public address announcement to see if another passenger may be willing to volunteer a personal one. An alternative is to assume the blood sugar is low (particularly in a syncopal event) and to provide an oral dextrose source such as orange juice if the passenger is able to drink.

 

 Upcoming Developments

 The EMK was primarily designed for adult medical emergencies and lacks pediatric appropriate supplies and equipment. In 2018, the FAA Reauthorization Bill was passed which included verbiage from the Airplane Kids in Transit Safety Act and directed the FAA to revise the EMK to meet the needs of children [16]. The FAA has yet to provide guidance in response to this bill.


 International Regulations and Equipment

 

Figure 14

An EMK that meets European AMC1 CAT.IDE.A.225 regulatory requirements

An EMK that meets European AMC1 CAT.IDE.A.225 regulatory requirements

Internationally, wide variations exist for on-board medical equipment. In Canada, an AED is not required by regulations and an EMK is only required on civil aircraft carrying more than 100 passengers [17, 18].  In Europe, defibrillators are not required, although are recommended if an aircraft has 30 or more passengers with at least one member of cabin crew [19].  One 2014 paper found that many German airlines did not carry AEDs and one carrier did not have any CPR equipment on board [20]. In contrast, some airlines on their own initiative, such as British Airways, far exceed these requirements, carrying an extensive array of medications and equipment including benzodiazepines, buprenorphine, antibiotics and suture equipment [21]. These optional enhancements have led to several remarkable stories of innovation and improvisation, including a 1995 case in which a physician volunteer improvised a chest tube for a passenger suffering from a tension pneumothorax using a urinary catheter found in the British Airways medical kit [22].

 Conclusion

 Despite the perceived austere clinical environment a commercial aircraft might present, US airline carriers are equipped with emergency medical supplies that a physician volunteer can effectively utilize. Whenever possible, the medical volunteer should consult with ground based medical support.  Familiarity with what and what is not carried will enhance a volunteer provider’s ability to respond to in-flight emergencies. For further information, an excellent review in JAMA is published at https://jamanetwork.com/journals/jama/article-abstract/2719313

Liao_bio.001.jpeg

References

[1] Epstein, Catherine R, et al. “Frequency and Clinical Spectrum of in-Flight Medical Incidents during Domestic and International Flights.” Anaesthesia and Intensive Care, vol. 47, no. 1, 13 Feb. 2019, pp. 16–22., doi:10.1177/0310057x18811748.

[2] Peterson, D. C., Martin-Gill, et al.  (2013). Outcomes of Medical Emergencies on Commercial Airline Flights. New England Journal of Medicine, 368(22), 2075-2083. doi:10.1056/nejmoa1212052

[3] Kesapli, Mustafa, et al. “Inflight Emergencies During Eurasian Flights.” Journal of Travel Medicine, vol. 22, no. 6, 2015, pp. 361–367., doi:10.1111/jtm.12230.

[4] Martin-Gill, C., Doyle, T. J., & Yealy, D. M. (2018). In-flight medical emergencies. JAMA, 320(24), 2580-2590. doi:10.1001/jama.2018.19842

[5] U.S. G.P.O. Public Law 105 - 170 - Aviation Medical Assistance Act of 1998 (1998) (enacted).

[6] FAA. (2006). Emergency medical equipment (121-33B). Retrieved from

https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC121-33B.pdf

[7] FAA. (2006). Emergency medical equipment training (121-34B). Retrieved from https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC121-34B.pdf

[8] JAL. (n.d.). JAL DOCTOR Registration System. Retrieved from https://www.jal.co.jp/en/jmb/doctor/

[9] Lufthansa. (n.d.). Doctor on Board. Retrieved from https://www.lufthansa.com/de/en/doctor-on-board

[10] Nable, J. V., Tupe, C. L., Gehle, B. D., & Brady, W. J. (2015). In-Flight Medical Emergencies during Commercial Travel. New England Journal of Medicine, 373(10), 939-945. doi:10.1056/nejmra1409213

[11] Doyle, A. (2010, December 7). MEBA: RDT demonstrates Tempus IC telemedicine system. Retrieved from https://www.flightglobal.com/news/articles/meba-rdt-demonstrates-tempus-ic-telemedicine-system-350616/

[12] Gradwell, D., & Rainford, D. (2016). Hypoxia and hyperventilation. In Ernsting's Aviation and Space Medicine 5E (pp. 55-56). Boca Raton, FL: CRC Press.

[13] Zar, H. (2000). Are spacers made from sealed cold-drink bottles as effective as conventional spacers? Western Journal of Medicine173(4), 253-253. doi:10.1136/ewjm.173.4.253

[14] Gradwell, D., & Rainford, D. (2016).Motion Sickness. In Ernsting's Aviation and Space Medicine 5E (pp. 794-795). Boca Raton, FL: CRC Press.

[15] JAL. (n.d.). Medical Supplies and Equipment on Board. Retrieved from https://www.jal.co.jp/en/health/medicines/

[16] Kraft, C. (2018, October 3). AAP Applauds Passage of Bill That Will Keep Children Safe During Air Travel. Retrieved from https://www.aap.org/en-us/about-the-aap/aap-press-room/Pages/AAPStatementAirplaneKiTSAct.aspx

[17] Transport Canada. (2018, April 5). Advisory Circular (AC) No. 705-010. Retrieved from http://www.tc.gc.ca/en/services/aviation/reference-centre/advisory-circulars/ac-705-010.html

[18] Transport Canada. (2019, March 18). Part VII - Commercial Air Services. Retrieved from https://www.tc.gc.ca/eng/civilaviation/regserv/cars/part7-standards-725-2173.htm#725_90

[19] EASA. (2018). Carriage and use of Automatic External Defibrillators (2018-03). Retrieved from https://ad.easa.europa.eu/blob/EASA_SIB_2018_03.pdf/SIB_2018-03_1

[20] Hinkelbein, J., Neuhaus, C., Wetsch, W. A., Spelten, O., Picker, S., Böttiger, B. W., & Gathof, B. S. (2014). Emergency Medical Equipment On Board German Airliners. Journal of Travel Medicine, 21(5), 318-323. doi:10.1111/jtm.12138

[21] British Airways. (n.d.). BA Medical Kit. Retrieved from https://www.britishairways.com/health/docs/during/Aircraft_Medical_Kit.pdf

[22] Wallace, W. A. (1995). Managing in flight emergencies. BMJ, 311(7001), 374-375. doi:10.1136/bmj.311.7001.374

 

 

Article Bites #11: Measuring the Impact of a Telehealth Program on Ambulance Transports

Article Reviewed:

Champagne-langabeer T, Langabeer JR, Roberts KE, et al. Telehealth Impact on Primary Care Related Ambulance Transports. Prehosp Emerg Care. 2019;:1-6. [PMID: 30626250]

Background & Objectives:

Prior studies have confirmed what is known by many of those who work in EMS: a high proportion of patients that are transported have non-emergent conditions. Several studies have demonstrated that between 33 and 50% of all ambulance transports are for non-emergent causes. These transports often times result in signifiant resource utilization from EMS systems that are stretched very thin.  Furthermore, these transports may often be linked with ED overcrowding problems and increased healthcare costs. The role of telehealth has already been shown to be a cost effective and beneficial approach to many aspects of healthcare, including tele-ICUs and within EMS as part of trauma, stroke and cardiovascular care. The primary objective of this study was to investigate the impact of a large-scale telehealth program that utilizes non-ambulance based transportation (i.e. taxi) and paramedic triage of non-urgent complaints on overall EMS transports.

Methods:

The investigators conducted an observational study from January 2015 to December 2017 for patients triaged by the Emergency Telehealth and Navigation Program (ETHAN) program developed by the Houston Fire Department. According to the study protocol, EMTs and paramedics were tasked with enrolling patients with non-life threatening conditions or mild illnesses. To be formally included in the study, the following criteria needed to be met:

  1. full history and physical exam with no obvious emergency

  2. age >3 months

  3. English speaking

  4. Normal vital signs; afebrile if chronically ill or over 65 years of age

  5. ability to care for self

  6. ability to be transported in a passenger vehicle. 

Patients who did not meet all inclusion criteria or who had other high risk features of their presentation suggestive of an emergency condition were excluded from the analysis. For those who qualified for the study, enrollees were connected via tablet to a board certified emergency physician who determined if the patient could be referred for follow-up with a primary care facility via versus requiring transport via ambulance. The primary variable that was studied was whether patients were transported by ambulance. Patients who were not transported via ambulance were offered transport to the ED or a primary care facility via taxi. 


Key Results:

During the study period, the investigators enrolled 15,067 patients in the telehealth program (equivalent to 2% of the overall EMS volume during this period). The key results from the study were as follows:

  • 11.2% of patients in the telehealth program were transported by ambulance

  • 75.6% of patients were transported by taxi instead of ambulance (5% of these patients were transported to a clinic instead of the ED)

  • 13.2% of patients transported themselves or were not transported at all

  • Patients were more likely to be transported by ambulance in the telehealth program if the chief complaint was abdominal pain (19.6%), low-risk chest pain (8.3%), shortness of breath (5.2%), or dizziness (3.7%)

alttransports.jpg

Takeaways:

  • Over the course of the study period, a telehealth program to identify patients with non-emergent conditions was successful in helping avoid unnecessary ambulance transports

What this means for EMS:

EMS agencies are faced with increased demand of services by the public with decreased available resources and higher costs. Telehealth in the prehospital setting is a novel approach to identify patients that may be suitable for transport via taxi and allow for EMS units to stay in service and serve other patients who present with other time critical conditions. This study did not show a significant decrease in the number of patients that were ultimately transported to the ED (only 2% of overall call volume participated & the majority of patients were still transported to the ED via taxi) and did not provide patient outcome data regarding accuracy of triage as non-emergent. However, it does demonstrate that a telehealth program is feasible within a large EMS system and highlights a promising avenue towards matching healthcare resources with patient needs and thus represents an important advancement in the field of EMS medicine.

Article Review by EMS MEd Article Bites Editor, Al Lulla MD (@al_lulla)

ET3: Perspectives of a Paramedic and PA

figure_spotlight.001.jpeg

As both a Paramedic and an Emergency Medicine Physician Assistant I commend those who made the announcement of the Emergency Triage, Treat and Transport (ET3) payment model a possibility.  This is by far, one of the biggest steps in the advancement of modern EMS.  This historic payment model could finally bring an end to the “you call, we haul” motto that has plagued EMS since its inception.  One of the most beneficial sections of this new payment model is that it allows current EMS providers the option to transport to hospitals, urgent cares, primary care offices, or, when necessary, to “stay and play”, allowing EMS professionals to provide treatment in place with qualified healthcare providers, via telehealth when necessary.  While I feel this is beneficial to the EMS community as a whole, it begs the question what does this mean for the day to day provider?

As a paramedic, I am thrilled that this may curve the overwhelming amount of calls that do not require trips to the emergency room.  I can recall many trips for simple requests, such as  prescription refills, cast removal, cold and cough symptoms, or suture removal that would be placed in triage and often still be sitting in the same seat when I returned with the next patient.   I often thought to myself that there has to be another way - that trips to the ED were not always the answer, but if only we could take them to their primary care office, or utilize technology to communicate with their provider.  Then there were the many calls I would run that would end without any transport at all.  Often there would be treatment provided on scene, but then would come the refusal of transport.  For paramedics, these are also some of the highest risk refusals, but that’s another topic on good documentation.  I feel that the lack of access to healthcare was the basis of many non-transport calls, people whose only reliable way to see a provider was to call 911.  A perfect example is the underinsured patient with diabetes.  Patients who needed their blood sugar checked, were hypoglycemic, received treatment and when alert again, would sign the refusal of transportation form.  These trips would often end with a call to a medical control provider but would yield no payment to the EMS service.

For years, we have fought to be recognized as a valued part of the medical team, and this new service model has the possibility of being a giant leap for EMS kind.  Not only does this require the implementation of quality metrics for EMS service but provides paramedics a platform to shine.  EMS providers are now able to highlight their mastery of pre-hospital medicine, human pathology, knowledge of medical protocols, and dedication to patient care, no matter where that care may be delivered.  This is our chance to prove to the world that paramedics and EMTs are capable of quality, evidence based prehospital medical care, and not just basic transport.  With increased power comes greater responsibility and thus the responsibility of advanced education now falls onto the shoulders of my EMS family.  Advanced education, in the form of college degrees or specialty certification, is paramount for providers making definitive decisions for patients, and as professional healthcare providers, we should not fear this change.  At this time, paramedics are faced with the ability to be valued members of the medical community, it is time we seize this moment to bear the responsibility, to ourselves, our patients and our communities.

 As a PA, the ability of alternative (more appropriate) destinations brings the obvious benefit of a decompressed ED waiting room.  Many of my patients are there because they have no other avenues to see a provider.  This new payment model is a way to allow for a more efficient and effective pre hospital triage, and subsequently improved treatment of the 911 patient.  Paramedics in the field would now be able to utilize urgent cares and primary care providers to facilitate the most appropriate level of care, while having the ability to be paid for the services they provide.  It also allows for a closer collaboration opportunity between in-hospital providers and pre-hospital providers via additional resource utilization, such as telehealth.

 Overall I think this is a great leap in the right direction for EMS and the future of our profession.

This new reimbursement model creates standardized benchmarks for the EMS providers.  The goal of which is to improve the quality of care, while decrease the overall cost of healthcare.  It is our responsibility as EMS providers to show that we are worthy of this opportunity and seize it with overwhelming care, compassion, and efficient care for our patients.  It is also our responsibility to make assure we have the education, knowledge and the skills to advance the EMS profession and allow ET3 to be the giant leap forward EMS so desperately needs.  This may also allow for new relationships between EMS providers and hospitals in the region to be formed. It is my hope and belief that this announcement will improve the effectiveness and efficiency of prehospital medical care and allow the continued growth of MIH programs nationwide.

 

Wright_bio.001.jpeg

Can ET3 push the field of medical direction to where it should be?

by Melissa Kroll, MD and Hawnwan P. Moy, MD

 Introduction

stamp_cube.gif

The Center for Medicare and Medicaid Services’ (CMS) passage of the Emergency Triage, Treat, and Transport model (ET3) not only recognizes EMS as part of the health care system but is a significant step in developing a mature EMS system.  But what does this mean for the EMS medical director?  It is unlikely that we will be notoriously ignored like the 1973 EMS System Act of old. But will it help propel the office of the EMS medical director from an often unpaid (or underpaid) position struggling to fulfill the needs of the EMS system to a widely recognized and valued component of the healthcare system? Before we attempt to answer these questions, let’s review what the ET3 model hopes to establish.

What is ET3?

A new model for prehospital care that allows for increased flexibility and efficiency.

 The ET3 Model is a voluntary, five-year payment model aimed at increasing the flexibility and efficiency of prehospital systems. Essentially, with this trial period, CMS has agreed to pay EMS services for the following:

 1) transport an individual to an emergency department or other destination covered under the regulations

 2) transport to an appropriate destination (such as a primary care doctor’s office or an urgent care clinic)

  3) or provide treatment in place with a qualified health care practitioner, either on scene or connected using telehealth.

ET3 hopes this model will encourage cooperative agreements between local EMS systems and surrounding dispatch systems, hospitals, clinics, local governments, etc. This system also allows for increased accountability of systems through monitoring of programs through specific QI/QA metrics.

 

Feb 14, 2019. Emergency Triage, Treat, and Transport (ET3) Model. https://www.cms.gov/newsroom/fact-sheets/emergency-triage-treat-and-transport-et3-model

Feb 14, 2019. Emergency Triage, Treat, and Transport (ET3) Model. https://www.cms.gov/newsroom/fact-sheets/emergency-triage-treat-and-transport-et3-model

 What does this mean for the Medical Director?

Not just a “sign here Doc” system.

 If we ask any lay person what a good fire or police chief can do for their community, they may not answer with specifics, but they implicitly understand the role of such leadership positions.  If you ask them what a good EMS medical director can do for their community, you’re probably going to get a blank stare. Perhaps we have been too complacent in advertising what it is that a good EMS medical director can do for the EMS service and community.  Let’s take the opportunity now to highlight what a good medical director can do to ensure the success of ET3 and improve community health.   

  1. At the heart of it all, a medical director is a physician first.  Physicians have duty to ensure that the patient remains at the center of the system -an active medical director ensures that the patient is always number one.

  2. With the ET3 expansion of EMS systems there needs to be increased involvement and oversight by medical directors. As experts in the medical direction and having an intimate knowledge of how hospital systems operate as physicians, medical directors are a required leader for connecting the hospital, EMS systems, local governments, and other entities in a collaborative partnership.

  3. Many systems will be creating new processes, such as 911 triage, processes for determining optimum patient destination and who can best be treated in the home. New protocols requiring in-depth physician input will need to be developed, trialed, updated, and re-trialed.

  4. Constant quality improvement and quality assessment will need to be completed.  Continuous quality improvement, quality assessment, and timely feedback by the EMS Medical Director are required to ensure the safe medical care of the patient.

  5. Results will need to be published, presented, and discussed allowing for programs to learn from each other. Medical directors will need to be present, both in discussions at a higher level, but also on a ground level where practical application occurs to ensure a smooth maturation of the EMS system for the safety of our patients and still receive valuable data.

  6. ET3 allows for treatment to occur in the home in coordination with a qualified healthcare practitioner. Behind every prehospital provider that completes an in-home evaluation, there is the medical director who has provided focused, up to date education, training, and consistent quality assessment.

  7. In order to provide treatment in place, there will need to be a conversation with a qualified healthcare practitioner. For many systems, this will be a conversation with their medical director. This medical director will need to be accessible for consultation.  

 As a subspecialty of medicine, EMS should optimize the opportunity provided by ET3 to move EMS medical direction from “what is” to “what should be”.   We would be remiss not to recognize that unfortunately the term “medical director” currently describes a wide range of physician roles – from rubber stamp signatures on paperwork unknown personally to frontline providers to those who are involved in all aspects of patient care provided by an agency. The reason for this spectrum in medical direction is multifactorial.   EMS as a medical subspecialty is rather young, although EMS subspecialty fellowship training is working to build a larger base of involved EMS physicians.   At the state, agency or regional level, EMS medical directors are often excluded from decision-making. In addition, many medical director positions remain un- or under-funded and full time or majority time EMS physicians are few among us. Reimbursement rates for medical direction (the cost) largely do not acknowledge the value that an involved medical director can bring to the healthcare system.  This will be even more evident as we consider treat in place and alternative destinations which will better align patient needs with the current financial incentives of the healthcare market. 

 

The Future

The pilot will end. What needs to happen to make the future successful?

 Will a change in reimbursement structure such ET3 be the nidus to move medical direction to where it should be?  We think it can.   Fundamentally, systems that have relied on rubber stamp physicians will not be able to function in this expanded model.   EMS physicians will need to step up to both this challenge and responsibility.  Hopefully this new model provides a financial means to support them in doing so.

The ET3 is a 5-year pilot project. Which means it will end. In order to make this a sustainable option in the future, medical directors will not only need to be careful trackers of data, allowing for cost analysis of the impact, but leaders who demonstrate wisdom, integrity, and the expertise required to navigate the unique world of healthcare both in and out of hospitals while keeping an ever-vigilant eye on maintaining patient-focused care.  Let’s become the EMS Medical Directors we all strive to be.  

 

Kroll_moy.001.jpeg

Article Bites #10: Delivering Right Care and Transporting to the Right Place: Medical clearance of Psychiatric Emergencies in the Field

Article: Trivedi TK, Glenn M, Hern G, Schriger DL, Sporer KA. Emergency Medical Services Use Among Patients Receiving Involuntary Psychiatric Holds and the Safety of an Out-of-Hospital Screening Protocol to "Medically Clear" Psychiatric Emergencies in the Field, 2011 to 2016. Ann Emerg Med. 2019;73(1):42-51.

Background & Objectives:

Due to a nationwide shortage of inpatient psychiatric beds, patients with psychiatric emergencies often spend long periods of time waiting in the ED for placement for psychiatric care. These long wait times are associated with more ED overcrowding, increased costs, and unfortunately sometimes inhumane conditions for patients and increased stress for staff. The vast majority of patients with involuntary psychiatric holds are brought to the ED by EMS, usually for medical clearance and evaluation for other possible non-psychiatric causes of the patient’s presentation. This study investigated the role of an EMS field protocol to allow EMS to bypass EDs and transport patients directly to a psychiatric facility. 

Methods:

The investigators conducted a retrospective review of all EMS transports in Alameda County, CA between November 1, 2011 to November 1, 2016, focusing particularly on patients receiving involuntary psychiatric holds. To assess for patients who received involuntary holds, the investigators evaluated the medical priority dispatch system code, primary impression, secondary impression and medical narrative as documented by EMS providers. According to the Alameda County EMS Agency protocol (see further reading below) patients with isolated psychiatric presentations can be transported directly to a stand alone psychiatric facility provided protocol criteria is met. Two primary outcomes were examined. First, the investigators compared “involuntary hold patients” with those patients who never received an involuntary hold to identify what specific characteristics were associated with patients receiving involuntary hold status. The second outcome that was evaluated was the safety of an EMS field protocol to screen patients for direct transport to a psychiatric facility and bypass of the ED. This measure was defined by retransport of a patient to the ED within 12 hours of transport to the psychiatric facility (AKA “failed diversion”).

Key Results:

During the study period, the investigators identified 541,731 total EMS transports (257,725 unique transports). Of the total transports, 10% (n=53,887) were for involuntary holds. The key results from the study were as follows

  • 41% (n=22,074) of transports for involuntary hold patients met protocol criteria for ED diversion and direct transport to stand alone psychiatric facility

  • Of patients who were transported to stand alone psychiatric facility, 0.3% (n=60) failed diversion and required retransport to ED within 12 hours

  • Involuntary hold patients were found to have significantly more total EMS use (24% of all encounters; n=128,003) compared to patients that never received hold status. They were also more likely to be younger, men, and have uninsured status

  • Of the patients requiring retransport within 12 hours, 54 of 60 of those patients developed new symptoms on arrival to the facility which did not manifest with their initial presentation to EMS. Reasons for retransport included traumatic injury (n=5), previously unrecognized or unreported symptom (n=13), seizure (n=8), excessive sedation (n=10), staff request for medical clearance of asymptomatic patient (n=7) new mental status change (n=5) or patient discharge from psychiatric service and self referral to EMS (n=5)

p1731.png

Takeaways:

  • Over the course of a 5 year period, an EMS field protocol to screen psychiatric involuntary hold patients for direct transport to a stand alone psychiatric facility performed safely, with only 0.3% of transported patients requiring retransport to an ED within 12 hours

  • Involuntary hold patients were usually younger and often uninsured. In addition, they had significantly higher overall EMS utilization

What this means for EMS:

This study demonstrates that implementation of an EMS field protocol can allow for safe diversion from ED directly to a psychiatric facility. The implementation of such protocol in EMS systems would likely have a significant impact on ED overcrowding and length of stay. This study highlights two important points: 1) The role of EMS with respect to hospital operations, ED operations and the health care system as a whole cannot be overstated. EMS systems nationwide may be able to build upon the lessons from Alameda County and help reduce ED overcrowding concerns as well as more rapidly direct patients to the psychiatric care they need. 2) EMS utilization by patients with psychiatric illness is significant, with roughly one-quarter of all transports in Alameda County being for “involuntary holds” during the 5 year study period. This further re-inforces the importance of both federal and local resource allocation for psychiatric illness. 

Further Reading: 

Alameda County EMS involuntary hold protocol:

https://www.annemergmed.com/cms/10.1016/j.annemergmed.2018.08.422/attachment/b3ec30ed-3ced-4eca-963b-82a60f05d663/mmc2.pdf

Review and Infographic by Article Bites Editor, Al Lulla MD (@al_lulla)

Article Bites #9: The Emergency within EMS - Risk of Suicide in EMS Compared to the General Public

Death by Suicide — The EMS Profession Compared to the General Public

Vigil NH, Grant AR, Perez O, et al. Death by Suicide-The EMS Profession Compared to the General Public. Prehosp Emerg Care. 2018;:1-6.[PMID: 30136908]

 

Background & Objectives:

 Suicide is a public health crisis with an estimate 45,000 individuals dying from suicide annually. Certain professions, including law enforcement and EMS are exposed to high degrees of workplace stress, therefore it is hypothesized that these individuals are more predisposed to conditions including anxiety, depression and suicidal ideation and behaviors. Survey data examined by the National Association of Emergency Medical Technicians (NAEMT) has indicated that there is very high occurrence of suicidal ideation within the EMS community. Despite this important information, the relationship between suicidal ideation and suicide attempt with the completion of suicide in EMS providers has not been well studied. The authors of this study aimed to assess the odds of death by suicide completion in EMTs compared to non-EMTs.  

 Methods:

The investigators conducted a retrospective case-control study that analyzed the electronic death registry in Arizona from January 2009 to December 2015. Only adults greater than or equal to the age of 18 were included in the analysis. Multiple variables from the death registry were examined including age gender, race, ethnicity, and most importantly for the purposes of this study: cause of death and occupation. With respect to occupation, the term "EMT" was categorized as all individuals who had EMT certification, including firefighters, EMTs and paramedics. A logistic regression model was implemented to calculate the mortality odds ratio (MOR) of suicide between EMTs (exposed group) and non-EMTs (non-exposed group). 

 

Key Results:

In total, 350,998 adults were analyzed who died during the above time period. The key results from the study were as follows:

· There were 1,205 EMT deaths during the study period

o   63 (5.2%) were attributed to suicide. This is compared to the non-EMT group of which 2.2% of deaths were due to suicide. 

· MOR for EMTs versus non-EMTs was 2.45; [95% CI (1.88-3.13)]

· Adjusted MOR for EMTs versus non-EMTs was 1.29; [95% CI (1.06-1.82)] adjusted for gender, age, race and ethnicity 

p1693.jpeg

· The most common mechanisms of suicide in the EMT group was firearm (67%), however there was no significant difference between death by firearm in the EMT cohort versus the non-EMT cohort. 

 

Takeaways:

· In the Arizona electronic death registry, there were higher odds for death by suicide in EMTs compared to the general public. 

 

What this means for EMS:

EMS providers are faced with significant workplace stressors. Whether it’s traumatic calls, poor sleep quality, poor compensation, long hours, or overall low job satisfaction, EMS remains one of the most challenging professions. These aspects of the EMS profession, unfortunately, contribute to a host of mental health issues including depression, anxiety, PTSD, all of which predispose individuals to developing suicidal ideation and behaviors. The time to act is now. The results of this study are extremely compelling and must serve as the impetus for change within the profession. Further studies that precisely characterize the risk factors that place EMS providers at higher risk than the general public should be examined as well. Despite this, the findings from this research still demonstrate the need for greater EMS education regarding the symptoms and warning signs of suicidal behavior, the importance of adequate resources for counseling and mental health, and improved work conditions to protect those individuals who protect our communities and our patients. 

Article Reviewed by Article Bites Editor Al Lulla, MD.

Article Bites #8: Reconsidering Priorities of care: epinephrine in out of hospital cardiac arrest

A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest

Perkins GD, Ji C, Deakin CD, et al. A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest. N Engl J Med. 2018. [PMID: 30021076]

Background & Objectives:

Other than early CPR and defibrillation, there are few measures that have been shown to improve outcomes for out-of-hospital cardiac arrest (OHCA). Despite this, epinephrine has been at the crux of ACLS management of patients with OHCA given the thought that it can cause peripheral vasoconstriction, increased beta adrenergic activity and augment coronary blood flow. In turn, epinephrine increase chances of return of spontaneous circulation (ROSC). While higher rates of ROSC have been confirmed in prior studies on epinephrine, unfortunately most of what we know about epinephrine suggests that it’s administration may not improve the most important clinical outcome - neurologically intact survival. The PARAMEDIC2 trial (Prehospital Assessment of the Role of Adrenaline: Measuring the Effectiveness of Drug Administration in Cardiac Arrest) was performed to assess whether epinephrine was beneficial or harmful as demonstrated by the primary outcome of 30 day survival. 

Methods:

The investigators conducted a multi agency (5 ambulance services), randomized, double-blind, placebo controlled trial in the United Kingdom from December 2014 to October 2017 in adult patients who sustained OHCA for which ACLS was provided by paramedics. Patients were excluded from the trial if they were pregnant, less than 16 years of age, had cardiac arrest secondary to anaphylaxis or asthma, or if they had administration of epinephrine prior to the arrival of EMS personnel. If initial resuscitation measures (CPR and defibrillation) were unsuccessful, patients were randomized to the intervention arm (1mg epinephrine q3-5 mins in accordance with ACLS protocols) or the control arm (normal saline placebo). As stated above, the primary outcome of the trial was 30 day survival. Secondary outcomes that were examined included rate of survival until hospital admission, length of hospital stay and ICU stay, rates of survival at hospital discharge and at 3 months, neurological outcomes at hospital discharge and at 3 months. Favorable neurological outcome was defined as modified Ranking score of 3 or less. 

Key Results:

In total, 8014 patients with OHCA were enrolled in the study over the 3 year period of which 4015 patients were in the intervention arm (epinephrine) compared to 3999 patients in the placebo arm. Both groups were well matched in terms of baseline patient characteristics.The key results from the trial were as follows:

  • 30 day survival: 3.2% in epinephrine group vs 2.4% in placebo group (OR 1.39; 95% CI 1.06-1.82, p=0.02).

  • Favorable neurological survival at 3 months (modified Rankin score 3 or less): 2.1% in epinephrine group vs. 1.6% in placebo group (OR  1.31; 95% CI 0.94-1.82.

  • Severe neurological impairment (modified Rankin score 4 or 5): 31% in epinephrine group vs. 17.8% in placebo group

  • ROSC during prehospital resuscitation: 36.3% in epinephrine group vs. 11.7% in placebo group

Takeaways:In this multi-agency, prospective, double blinded randomized placebo controlled trial, administration of epinephrine for OHCA was associated with a statistically significant higher 30 day rate of survival compared to placebo, but no difference in neurologically-intact survival.

Epinephrine Group (2).jpg


What this means for EMS:This study is the largest randomized controlled trial performed to date studying the impact of epinephrine administration on survival and neurological outcomes for OHCA. While administration of epinephrine has long been the pharmacological mainstay of prehospital (as well as in-hospital) management of OHCA, this trial calls into question its influence on patient centered outcomes (i.e. neurological intact survival). While this paper will surely be at the center of debate in the upcoming years within EMS circles around the world, one thing remains abundantly clear at this point: good quality BLS Care in the form high quality CPR and early defibrillation have the greatest impact on neurologically intact survival and should be the primary focus of resuscitation for cardiac arrest.

author_bios_lulla_sva.001.jpeg

Changing Paradigms?  Medication Administration in Cardiac Arrest

cover.jpg

Case Scenario:

EMS is dispatched for a 47 year old male who is unconscious with abnormal breathing.   A double BLS ambulance arrives on scene first. The patient is at first poorly responsive and moaning, but soon after develops agonal respirations and is found to be pulseless. CPR is initiated and an AED is applied.  He is found to be in PEA at the first pulse check. The paramedic arrives 3 minutes later and establishes intravenous access.

What medications, if any, should be given and why?  Are there historical factors or rhythm characteristics that affect this decision? What if the rhythm is ventricular fibrillation?

Within the last few years, a number of studies have challenged the role of medication administration in the treatment of out-of-hospital cardiac arrest.   Have these changed your practice and how?   

Please share your thoughts (ideally with citations!) by January 15th. A summary post will be published in January.

Article Bites #7: Should Air Medical Transport administer plasma to trauma patients at risk for hemorrhagic shock?

Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock

Sperry JL, Guyette FX, Brown JB, et al. Prehospital Plasma during Air Medical Transport in Trauma Patients at Risk for Hemorrhagic Shock. N Engl J Med. 2018;379(4):315-326. [PMID: 30044935]

Background & Objectives:

Hemorrhagic shock remains the most significant cause of mortality in trauma patients. In particular, coagulopathy is a significant contributor to death in this patient population and has been a focus of what is termed “damage-control resuscitation” in both civilian and battlefield arenas. Currently, there is a stronger push for resuscitation with blood-components including platelets and packed red cells in favor over crystalloid based resuscitation strategies. The premise of early damage control resuscitation in the pre-hospital environment is predicated on intervening at the point of injury and mitigating downstream complications including coagulopathy and irreversible hemorrhagic shock. Plasma administration as part of damage control resuscitation is thought directly address coagulopathy and improve chances for survival. This trial, termed the “Prehospital Air Medical Plasma (PAMPer)” trial sought to investigate the efficacy and safety of prehospital plasma administration in severely injured trauma patients. The primary outcome was the impact of prehospital plasma administration on 30 day mortality. 

Methods:

The investigators conducted a phase 3 multi-center cluster-randomized trial involving trauma  patients (blunt or penetrating) who were deemed to be at risk for hemorrhagic shock during air medical transport. Individual air medical bases were randomized to give plasma vs standard resuscitation in 1 month blocks. The intervention arm included patients who received 2 units of universal donor thawed plasma. The comparison group received standard of care resuscitation (crystalloid based resuscitation). Patients were deemed to be “at risk” for hemorrhagic shock were enrolled in the trial if they had at least one episode of hypotension (defined as systolic BP <90 mm Hg) and tachycardia (defined as HR >108 BPM) or if they had severe hypotension (defined as SBP <70 mm Hg) at any point in the prehospital phase of care. There were several exclusion criteria some of which included patients older than age 90 or younger than age 18, individuals who were pregnant, had traumatic cardiac arrest lasting longer than 5 minutes, penetrating brain injury, or refusal by family member to participate in the trial or if the patient was wearing an “opt-out” bracelet reflecting their wish not to participate in the trial, among others. 

Key Results:

There were 27 air medical transport bases that were recruited for the study that transported patients to 9 different level 1 trauma centers across the United States between 2014 to 2017. In total, 7,275 patients were transported during the study period, of which 501 patients qualified for the study. Of these patients, 230 received plasma and 271 received standard care resuscitation. Average prehospital time was 40 minutes (95% CI 33-51) and 42 minutes (95% CI 34 to 53) in the plasma and saline treated groups respectively. The key findings were as follows:

  • Mortality at 30 days was significantly lower in the plasma group (23.2%) versus standard group (33.0%)

  • Absolute reduction was 9.8% in the plasma group (95% CI 1.0 to 18.6%; P=0.03). 

  • Median INR was lower in plasma group compared to standard group (1.2 vs 1.3; p<0.001)

  • No statistically significant difference was found in outcomes with respect to other variables including multi organ failure, acute lung injury/ARDS, or transfusion-related reactions

  • Number needed to treat (NNT) was 10. 

PAMPER.jpg

Takeaways:

  • In this prospective trial administration of plasma in the prehospital aeromedical transport setting was associated with decreased 30 day mortality in trauma patients at risk for hemorrhagic shock.

What this means for EMS:

In 2015, the PROPPR trial demonstrated improved outcomes in trauma patients receiving blood products (packed red cells, platelets, plasma) compared to crystalloid resuscitation. Little research has been done on the role of plasma administration at the point of injury in the prehospital setting. This study was one of the first to show that rapid prehospital administration of plasma products is associated with improved 30 day mortality. As stated in Article Bite #4, transfusion of blood products in the prehospital setting is associated with many logistical roadblocks, including but not limited to refrigeration, coordination with blood banks, and issues pertaining to wastage of products with a short shelf life, are all important considerations prior to routine implementation of this intervention. Given the traditional model of prehospital trauma care has focused on rapid transfer to a trauma center for definitive management, prehospital administration of plasma is a potential intervention that may lead to improved patient outcomes in some systems where distance to trauma center leads to extended prehospital times*.

Article summary and figure by Article Bites Editor Al Lulla, MD

* The COMBAT trial, which evaluated prehospital plasma transfusion for patients with signs of hemorrhagic shock within an urban system, did not find similar benefit.

Article Bites #6: Mac vs. Miller - A Retrospective review of Intubation Success

Cookie_stylzed_square.jpg

by Aaron Farney, MD

 Citation

Alter, S. M., Haim, E. D., Sullivan, A. H., & Clayton, L. M. (2018). Intubation of prehospital patients with curved laryngoscope blade is more successful than with straight blade. The American journal of emergency medicine.

 Background/Rationale

There are two direct laryngoscope blades available to EMS: the curved Macintosh and the straight Miller.  Most providers learn to operate both blades, but tend to gravitate towards one based on personal and/or institutional preference.  Existing literature suggests the straight blade allows for better visualization, but perhaps intubation is easier with a curved blade.  However, there are no existing studies comparing these blades in the prehospital setting.  The aim of this study is to compare intubation success with a Macintosh blade versus a Miller blade as performed during pre-hospital endotracheal intubation (ETI) by paramedics.


Methods: This was a retrospective chart review of patients who underwent prehospital ETI from 2007 – 2016 by a single hospital-based suburban EMS service in/near Boca Raton, FL. This system had a 20K EMS volume, double ALS ambulances, 2-tiered system. Intubation attempt was defined as blade passing incisors. Intubation success was defined as confirmation of oxygenation & ventilation following ETI.


Outcomes and results

  • 2,299 patients had ETI attempted

  • 1,865 attempted with curved blade only (81%)

  • 367 attempted with straight blade only (16%)

  • 67 attempted using both blades (3% - added to both groups above)

  • Both groups were similar in age, weight, and gender


Conclusions: Both first pass success rates and overall intubation success rates for paramedics were significantly higher when Mac blades were used.

table_macvsmiller.001.jpeg

Takehome

In this retrospective study,  first pass success rates and overall intubation success rates for paramedics were higher when Macintosh blades were used.  The difference of 13-15% is expected to be clinically significant. Other process measures such as perintubation hypoxia were not measured. The results of this study demonstrate correlation, not necessarily causation and are subject to confounding variables.   For example, the training backgrounds, in particular experience with different blade times, are unknown. However, this is a thought provoking study from the education and training perspective.  Should we be stressing training with curved blades or should we focus efforts to improve training with Miller blades or versatility in psychomotor skills?

farney_bio.001.jpeg

Not Your Typical Wake Up: A review of opioid related noncardiogenic pulmonary edema

by Aaron Farney MD

 Clinical Scenario

 You are called for a 25-year-old male, possible overdose, unknown if breathing.  On arrival, the patient is unresponsive on his bathroom floor.  Family reports they found him on the floor not breathing just prior to calling 911.  They had last seen him well 15 minutes prior.  He has a known history of heroin use, and you notice an empty syringe next to him.  On exam, he is unresponsive, cyanotic, with agonal respirations and has a pulse of 40. 

 You immediately commence resuscitative measures.  The airway is positioned, a nasopharyngeal airway is inserted, and positive pressure ventilations are initiated via a bag-valve mask connected to high-flow oxygen, with resultant resolution of cyanosis.  Four milligrams intranasal naloxone is administered.  About three minutes later, the patient wakes and you start to notice copious pink, frothy secretions.  You suction, but it continues, and even seems to increase.  The patient is now alert, complaining of shortness of breath and hypoxic to 78% despite a non-rebreather mask flowing at 15 liters/minute.  Your partner asks you “did he aspirate…?” 

 

What is happening, and what is the correct management?

 The phenomenon of opioid-related noncardiogenic pulmonary edema (NCPE) is not widely known in the prehospital realm.  As we are in the midst of an opioid crisis, the odds that the average field provider will encounter opioid-related NCPE is increasing.  The ability to recognize this phenomenon and knowing what to do will make all the difference to your patient.

edema.jpg

Background & Prevalence

The physician William Osler first described narcotic-related pulmonary edema during an autopsy in 1880 [1,2].  Its presentation and clinical course was not appreciated until the 1950s-60s.  The prevalence of opioid-related NCPE is about 2-10% of heroin overdoses [1,2].  It is most commonly seen in heroin overdose but has been reported with other opioids.

 Presentation & Clinical Course

Opioid-related NCPE typically presents as dyspnea accompanied by development of pink, frothy pulmonary secretions associated with ongoing hypoxia despite reversal of respiratory depression with an opioid antagonist (i.e. naloxone).  It often presents immediately after reversal but can be slightly delayed, up to four hours [1].  Most cases will resolve within 24-36 hours, but up to one-third of cases will require aggressive respiratory support [1,2].  If left untreated, it can progress to complete hypoxic respiratory failure, hypoxic end-organ injury, and cardiac arrest. 

Pathophysiology

The mechanism of opioid-related NCPE is poorly understood, in part because there are a variety of drugs involved, including the opioid antagonist naloxone.  There are several published theories.  Perhaps the most popular theory is increased pulmonary capillary permeability related to hypoxia and/or histamine release [1,2].  Heroin in particular is prone to causing excessive histamine release, causing leaky pulmonary vasculature.  Morphine is another drug known to do this. 

Other theories blame naloxone.  A patient who is opioid dependent, overdoses, and who is rapidly reversed with a high dose of naloxone subsequently experiences a catecholamine surge, particularly in those with concomitant cocaine use. [2] A second theory blaming naloxone is that following a prolonged period of near or complete apnea, reversal that results in inspiratory effort prior to complete opening of the glottis can result in excessive negative pressure within the lung, drawing in fluid from the pulmonary vasculature.  Administering positive pressure ventilation prior to naloxone therapy may mitigate this.  It is likely that opioid-related NCPE is multifactorial, with both the opioid agent and naloxone contributing.  Regardless of the underlying etiology, treatment remains the same.

 Management

The treatment of opioid-related NCPE is supportive and focused on correcting hypoxemia.  Initial measures include application of supplemental oxygen, preferably via a non-rebreather mask.  Patients with hypoxia refractory to high flow O2 warrant assisted ventilations.  Paramedics should have a low threshold for initiating CPAP therapy in the patient experiencing opioid-related pulmonary edema.  Hypoxemia or distress refractory to CPAP therapy may warrant endotracheal intubation and invasive ventilation to correct hypoxemia.  There has been no identified role for nitroglycerin or other medications in treating opioid-related NCPE.

 Back to the case:

The medic recognizes that this patient is experiencing opioid-related NCPE.  Only 8 minutes from the nearest emergency department, RSI is deferred in favor of immediate transport.  CPAP is placed onto the patient at a pressure of 5 cm H20.   The patient tolerates CPAP well, and oxygenation is improved to 90% on arrival at the emergency department, where care is transferred.  The patient continues to improve on CPAP and is admitted for further monitoring.

 Take-home points:

  • EMS should administer only the amount of naloxone required to reverse respiratory depression, not mental status.  Higher doses may increase risk of NCPE.

  • Opioid-related NCPE occurs in about 2-10% of opioid overdoses

  • Patients may complain of shortness of breath and will develop pink, frothy pulmonary secretions and hypoxia despite opioid reversal

  • Treatment is focused on correcting hypoxemia with supplemental oxygen and CPAP 

  • Cases refractory to CPAP may require invasive ventilation

  • All patients with opioid-related NCPE warrant transport.

farney_bio.001.jpeg

 

References

1.     Sporer KA & Dorn E. Heroin-Related Noncardiogenic Pulmonary Edema: A Case Series.  Chest 2001; 5:1628-1632.

2.     Sterrett et al. Patterns of Presentation in Heroin Overdose Resulting in Pulmonary Edema. American Journal of Emergency Medicine 2003; 21:32-34.

3.     Grosheider T & Sheperd SM. Chapter 296: Injection Drug Users.  Tintinalli’s Emergency Medicine 8th ed. 2016.

Article Bites #5: Pediatric Intubation - What's the first pass success rate in a physician-staffed helicopter retrieval service?

Analysis of Out-of-Hospital Pediatric Intubation by an Australian Helicopter Emergency Medical Service. 

Burns BJ, Watterson JB, Ware S, Regan L, Reid C. Analysis of Out-of-Hospital Pediatric Intubation by an Australian Helicopter Emergency Medical Service. Ann Emerg Med. 2017;70(6):773-782.e4. [PMID: 28460858]

Background & Objectives:

Adequate establishment and maintenance of a patent airway is one of the hallmarks of resuscitation. Pediatric intubation poses particular challenges, most notably lack of provider experience. It is estimated that first-pass success ranges from 66% to 85%. Prior studies have demonstrated no significant improvement in pediatric outcomes with prehospital intubation.  The intubation success rate in this study was only 57%.  [1]  Despite the difficulties associated with pediatric intubation, it remains within the scope of practice in the prehospital setting in some EMS services. The primary goal of this study was to report first-look success rate in pediatric advanced airway management in a physician-led adult out-of-hospital helicopter retrieval service. The secondary goal was to evaluate for potential complications of airway management as well as success by operator type, patient age and type of intubation.

Methods:

The investigators conducted a retrospective study evaluating patients who were treated by the Greater Sydney Area Helicopter Emergency Medical Service in Australia. This helicopter EMS service (HEMS) is comprised of a 2-person medical team with a physician and a paramedic. Physicians were usually board certified in emergency medicine or anesthesiology or residents with at least 5 years of experience. Paramedics were critical care paramedics with 10 years of experience and additional training with out of hospital care and retrieval medicine. The investigators evaluated an analysis of all out of hospital and interhospital pediatric intubations between January 2010 and April 2015. The only inclusion criteria was that the patient be younger than 16 years of age. Patients were intubated at the discretion of the team, with rapid sequence intubation (RSI) versus cold intubation (most frequently for cardiac arrest). The measures that were reported included critical timings (i.e. time to intubation), demographics, provider background, number of intubation attempts and complications. 

Key Results:

August_bite_info.jpg

In total there were 10,856 patients treated during the study period, of which 497 (4.6%) were pediatric patients. Of these patients, 82 (16.5%) were intubated by this particular HEMS service. The key findings were as follows:

  • First look success rate: 91% (75/82; 95% CI 83 to 97%). The overall success rate was 100%. 
  • 80% of patients were successfully intubated within 1 to 2 minutes after induction
    • 69/82 (84%) were rapid sequence inductions (RSI)
    • Ketamine was the most commonly used induction agent, utilized in 63/69 patients (91%) undergoing RSI
  • The most common indications for intubation included trauma (83%), head injury (56%), combative/agitated patient (29%). 
  • Median time to intubation was 25 minutes (defined as time from HEMS arrival to intubation)
  • Complication rate including hypotension, bradycardia and desaturation was 14%
  • Difficult airway indicators were present in 77% of patients that were intubated by this service

Takeaways:

  • In this retrospective series of pediatric intubations in the prehospital setting by a physician-lead helicopter service, first pass success was 91%. Overall success rate was 100% with only 9% of patients requiring multiple attempts). 

What this means for EMS:

The role of intubation in the field for pediatric patients is extremely controversial. Prior studies have demonstrated low rates of first pass success and overall lack of significant improvement in patient outcomes. This study showed an uncharacteristically high rate of first past success in the prehospital setting for pediatric patients. The investigators of this study attribute their high rate of success to a rigorous training program for providers in the field, frequent practice and checklists amongst other mandated practices. Overall, pediatric intubation in the field is a relatively rare occurrence with limited “on-the-job” training experience, which may be what has historically contributed to its unsuccessful implementation in the field. This study highlights the importance of adequate training and psychomotor mastery to performance of critical skills, particularly those that are rarely performed.  It did not evaluate the effect on clinical outcomes. 

References:

1. Gausche, M., Lewis, R. J., Stratton, S. J., Haynes, B. E., Gunter, C. S., Goodrich, S. M., ... & Seidel, J. S. (2000). Effect of out-of-hospital pediatric endotracheal intubation on survival and neurological outcome: a controlled clinical trial. Jama283(6), 783-790.

author_bios_lulla_sva.001.jpeg

Stroke Destination: An Opportunity for Innovation in System Design

Clinical Scenario:

In June, we posted the following scenario for comment:

EMS is called to the scene of a “possible stroke”.  The patient is a 75 yo female who was last known normal at 8 pm the night before when she went to bed with plans to watch TV before going to sleep.  She fell when she tried to get out of bed at 7 am.  Her daughter lives with her and heard her fall. When she came into the room, she noted that her mother had a right facial droop, right arm and right leg weakness. She also was unable to speak coherently.  The ambulance arrives on scene at 7:30 am and the EMT performs a Cincinnati stroke scale and confirms the findings reported by the patient’s daughter.   

The patient lives 20 minutes away from a community hospital which is designated as a primary stroke center.  The comprehensive stroke center with endovascular capability is located an hour away.

Where should the patient be taken?  What pre-notification alarm bells should be rung?  What criteria should EMS systems use to make these transportation decisions in a way that best serves patients without overburdening both the EMS system and comprehensive stroke centers?

We got many thoughtful comments on the above scenario that highlight the complexity of the systems-of-care decisions that face EMS on a local, regional and national level.

 

Background:  The Changing Landscape of Stroke care

Only incremental changes in stroke treatment occurred after the approval of IV tPA in 1996 which established a 3 hour window for IV thrombolysis.  After publication of the European trial ECASS III in 2008, the window extended to 3-4.5 hours.   But in 2015, a number of clinical trials were published that dramatically increased the management options available for the treatment of stroke patients and challenged the EMS community to change their destination protocols for stroke patients.  These 5 trials, MR. CLEAN, ESCAPE, SWIFT-PRIME, REVASCAT, and EXTEND-IA,  demonstrated that patients with NIHSS > 6 and proven large vessel occlusion by CT-angiogram may benefit from endovascular reperfusion therapy if they present within 6 hrs of stroke onset [1,2,3,4,5].   A subsequent metanalysis (HERMES) concluded that there may be potential benefit out to 7.3 hours after stroke onset [6].

Similarly to trauma centers, stroke centers are not all equivalent:

-        Primary stroke centers (PSCs) provide good stroke care and intravenous tPA

-        Thrombectomy-capable PSC can do everything a PSC does, but also has the capability to perform mechanical thrombectomy

-        Comprehensive Stroke Centers (CSC) have all of the above, plus extensive resources managing the most complicated patients with dedicated Neuro ICU, neurosurgical services, research and educational resources. 

Given the different capabilities of potential destinations, two main issues complicated EMS transport considerations:

(1)   To be eligible for endovascular therapy patients had to have a proven large vessel occlusion on CT angiogram. EMS needed to screen effectively for large vessel occlusions in the field using physical exam.  A number of scales were developed for this purpose, with varying and less than optimal sensitivity and specificity [7-14, Table 1].

(2)   Most of the patients in the above trials received tPA prior to going to endovascular therapy.  In many areas, bypassing a primary stroke center capable of administering tPA in favor of going directly to a comprehensive stroke center would place patients out of the tPA window.

Table 1:&nbsp; Sensitivity and Specificity for Prehospital Screens for Large Vessel Occlusion

Table 1:  Sensitivity and Specificity for Prehospital Screens for Large Vessel Occlusion

Above and beyond this, getting the right patient to the right place at the right time also included considerations for not overburdening Comprehensive stroke centers and excluding primary stroke centers.   Primarily in response to the above, the Mission: Lifeline Stroke was formed and  developed a Severity-Based Stroke Triage Algorithm for EMS to balance the competing demands of time to tPA, access to endovascular capability and overtriage/undertriage to comprehensive stroke centers.

While EMS was still collaboratively identifying best-practices for patients with possible LVO presenting within 6 hrs of last known normal, two other studies were published last summer which again challenged us reexamine our stroke process of care by extending the time window of patients eligible for endovascular treatment. 

The DAWN trial was a prospective, randomized, open-label clinical trial comparing thrombectomy plus standard care vs. standard care [15]. The trial included patients with the following characteristics:

  • Last known well between 6 to 24 hrs
  • NIHSS > 10
  • Imaging-confirmed large vessel occlusion (ICA or proximal MCA)
  • Mismatch between severity of clinical deficit and the infarct volume as determined by perfusion imaging.

The trial found a significant difference in functional independence at 90 days (49% for thrombectomy arm, 13% for standard care, p < 0.001) but no difference in 90 day mortality.

The DEFUSE-3 trial  was a randomized, open-label trial with blinded outcome assessment that compared thrombectomy + medical therapy vs. medical therapy alone [16].  The trial included patients with:

  • Last known well between 6 to 16 hrs
  • NIHSS ≥ 6
  • Imaging-confirmed large vessel occlusion (ICA or proximal MCA)
  • Initial infarct size of < 70 ml
  • Evidence of salvageable ischemic tissue on perfusion imaging defined as ratio of the volume of ischemic tissue on perfusion imaging to infarct volume of ≥1.8

Similarly to the DAWN trial, DEFUSE- found a significant improvement in functional independence at 90 days (endovascular therapy 45%, medical therapy 17%, p < 0.001).

Both trials included patients with severe deficits.  Mean and Inter-quartile range NIHSS for patients receiving thrombectomy in the DAWN and DEFUSE-3 trials were 17 (13-21) and 16 (10-20), respectively   

These trials present several new challenges for EMS transport decisions:

(1)   Patients who are clearly ineligible for IV tPA are included, leading to less competition between transport time to comprehensive stroke center (CSC) and tPA eligibility for a significant proportion of stroke patients.

(2)   The time criteria are broadened and include the very important population of “wake-up” strokes which made up a significant proportion of the LVO stroke population in the above trials. While broadening the population of patients to be screened for eligibility for endovascular therapy, the criteria are actually very narrow and imaging-based, increasing the possibility of a significant amount of over-triage to comprehensive stroke centers. In one retrospective review of all patients with acute ischemic stroke presenting to a Comprehensive Stroke Center only 1.7% of all patients would have qualified for DAWN enrollment with an additional 0.6 – 1.0% meeting DEFUSE-3 criteria. [17]. Moreover, while CT angiogram may be available at many primary stroke centers, the imaging software (like was utilized for patient selection in both DAWN and DEFUSE III) to evaluate perfusion is unlikely to be.

The comments we received on this post presented a number of responses and potential solutions to these challenges.

 

Comment Review:  The Brainstorming Phase and Regional Solutions

The Right Patient

 Dr. Aurora Lybeck made several great comments on this post.  She made the very important point that the first step in patient identification starts with the EMT or paramedic at the patient’s side.  Stating that “we shall use X… “ to screen for LVO without providing appropriate education and feedback to the provider at the patient’s side will decrease the sensitivity, specificity and utility of validated prehospital LVO screens:

 I think there are a few questions to answer before considering if we SHOULD as EMS to screen for LVO strokes and bypass PSCs for CSCs. 1) Can EMS reliably screen for LVO strokes and 2) What benefit is bypassing PSCs and going straight to a CSC going to have to the patient (a small margin of benefit or a large clinically significant benefit) and 3) what is the acceptable over-triage rates at the CSCs?

With regards to training, we can gather some of the evidence that demonstrates that EMTs can successfully perform one of the screening tests (LAPSS, CPSS, LAMS, RACE, or even a full NIHSS), but the implementation of that in a real-life EMS system with not just new training and competency expectations, but also embedded in a new protocol and transport guidelines that can sometimes be confusing depending on geography etc. If you are one medical director and/or educator and have hundreds of EMTs/paramedics, how are you going to adequately train them all? Have them practice the exam? Ensure competency? Scenarios or simulation? It may be possible with a smaller service or one with robust education but in reality, it's an important skill that requires not just skill training but critical thinking and a high degree of clinical competency.” – Aurora Lybeck

 If system-design changes are to succeed, they must include plans for involvement and education of the field provider if they are to effectively improve patient outcomes.

 

 The Right Place at the Right Time

From a system standpoint, the outcome benefit of endovascular therapy for a very select group of patients must be balanced with resource utilization within the system as a whole.  While it is easy to say that every potential LVO should go to a Comprehensive stroke center, this “transport intervention” could come with a significant amount of unnecessary overtriage that may overburden already-overcrowded centers and add significant cost to the system.

Several of the commenters specifically addressed the issue of over-triage to comprehensive stroke centers.  While there was general consensus that embolectomy candidates should be taken to CSC, there was variability in what their path to the stroke center should be.  In some cases, it was felt that prehospital LVO scale was sufficient to warrant PSC bypass.  In others, there was consideration whether the role of the PSC could still play a critical role in the care of these patients by offering a “secondary screen” in which imaging criteria was used to further narrow embolectomy candidates in such a way that significant time was not lost. While in the end this will vary by region structure and resources, these comments highlight the importance of considering different solutions to the same problem, implementing effective system metrics and measuring patient outcomes:

If the patient has signs and symptoms of a large vessel occlusion than bypass the primary stroke center for the comprehensive stroke center because tpa alone at the primary may not be effective against the large clot and clot retrieval will be needed anyway, I think???” – Kyle

 “RACE LAMS or CPSSS positive for LVO need to go to a comprehensive center. These are the prehospitally validated scales for LVO. If it is to far or time intensive call the helicopter. We are happy to help because time is brain and minutes matter.” – Bill K

What criteria should EMS systems use to make these transportation decisions in a way that best serves patients without overburdening both the EMS system and comprehensive stroke centers?
- Patient time since last known to be normal
- Willingness of comprehensive stroke center to be OK with a certain amount of over triage
.” – Greg Friese

RACE LAMS or CPSSS positive for LVO need to go to a comprehensive center. These are the prehospitally validated scales for LVO. If it is to far or time intensive call the helicopter. We are happy to help because time is brain and minutes matter.” – Bill K

We have to be careful when considering this question and come to an answer in a vacuum. EMS triage and destination is critical. But those decisions need to be made in the context of the system of care in region. A regional system of care where the primary stroke center (PSC) can perform a CTA immediately on arrival and upload it to a cloud based imaging viewer that the comprehensive stroke center (CSC) can also immediately review allows the PSC to perform the critical initial function of identifying those that are candidates for embolectomy. Add that to a system where inter-facility transport can be rapidly secured or even auto-launched, the OR can be mobilized ahead of patient arrival, and the patient can be brought directly to the OR at the CSC, and the initial medical contact by EMS to CSC groin puncture time will likely be the same or even less than if the patient was triaged pre-hospital to bypass the PSC and go to the CSC. If too many patients get triaged prehospital to the CSC, then the CSC's resources (personnel, scanners, ED beds, neuro beds) may be overwhelmed and their ability to provide care to their LVO-strokes will be compromised. If there is no LVO or they have an LVO, but aren't a candidate for embolectomy based on the initial imaging acquired, they can be cared for just as well at the PSC as at the CSC in most cases.” - Chris Zammit

Great discussion!
In this patient with wake up stroke I would transport to PSC first. Although she does have a LA Motor Score/CSTAT and RACE concerning for LVO she is a wake up and would need both a primary stroke work up (CT to evaluate for hemorrhage and CTA head and neck to identify if she has LVO lesion) It the CTA is positive then perform CTP or DWMRI to evaluate if she fits the criteria set fourth by the DAWN trial or DEFFUSE 3 for reperfusion. I believe most of this can be done at the PSC if there is a prior algorithm with EMS and cooperation for door in door out transfer direct to intervention to the CSC if she has an LVO and fits criteria.”
– Rob Dickson

So, if we decide that based on the evidence, an EMT can indeed be taught the chosen LVO screening exam and can indeed implement it within a new stroke transport destination protocol and can retain the skill and demonstrate competency over time, now how is that implemented in a given service or area? Some protocols will suggest a given time guidelines (ie if there is a CSC within 30 min, or bypassing a PSC would not extend the patient's ED arrival more than 20 minutes for example). But there is little to no evidence to guide us on how to geographically on transport- not to mention the reality of time estimates that many of us recognize from practicing in the field. If you plop yourself at any given residential address within your service area, do you know exactly how far you are from the closest PSC? CSC? The difference between those sites? Are they supposed to pull up a map with estimated arrival times and calculate the difference? There is so much subjectivity there, it's worth considering all the possible scenarios before implementing a change as important as bypassing a PSC. For some areas, it's a moot point. Where I trained in residency and in fellowship, we were in major metropolitan areas, where a CSC is rarely more than 15-20 minutes away. Unless your PSC is in the complete opposite direction and you're on the edge of the city, there is likely more to gain and less to lose by choosing the CSC over the PSC- as long as that CSC is willing to accept a lot more stroke patients, knowing that EMS may just default to the "easy" decision of bringing all stroke patients to the CSC (not saying it's the right decision, but with complex decision making we know the easiest generalization is often chosen regardless of the protocol minutiae). However, I currently practice in a more rural and suburban area, where the CSC may be over an hour away. For many of our services, it wouldn't make any sense to implement screening and new protocols for LVO occlusion when their closest local facility is a PSC and transporting to the CSC would be a delay long enough to exclude some patients from receiving TPA if they are not interventional candidates- those patients are much better served being brought to the local PSC, treated with TPA if eligible, and transported to the CSC for intervention if indeed an LVO and eligible for endovascular intervention- ie the model we are currently using.” – Aurora Lybeck

 

One other consideration for transport time is patient stability balanced with the clinical skills/training of the field provider:

Where should the patient be taken?
If I am in the story as an EMT ... I am going to the nearest hospital. An hour feels like a long time to be with a patient who potentially needs ALS interventions.”
– Greg Friese

Agree with Greg as well that there are considerations of long transport and risk of airway compromise so provider level of training and capability has to play a role. Also we must consider geographic location and strain on resources from having a truck out of service for 3 hours on this transport.
Lot's depends on geography and capabilities of your particular system
” - Rob Dickson

 

In his expert review of this post, Dr. Pete Panagos (Co-Chair of Mission:Lifeline Stroke) wrote the following:

A big issue also to at least mention is door-in-door-out (DIDO) from PSC to CSC.  IF the decision is to always go to nearest/closest stroke center, then the PSC, and EMS, must be committed to rapid identification, evaluation and transfer out, literally within 30-60 minutes of arrival and/or decision to transfer.

 

Don’t Forget the Basics

 Overall, while I think the prospect of identifying LVOs in the field accurately and transporting them to the most definitive care/CSC is exciting and their expedited treatment and recovery is a clinically important outcome to focus on, I don't want to lose sight of excellent basic stroke care for all patients. For high functioning urban systems with robust education and training that can implement such new screening skills and protocols, maintain competency, and demonstrate success in patient outcomes and acceptable over-triage rates to the CSCs, I think it's great. For most other services though, I think that time in education and emphasis is best spent on excellent basic prehospital stroke care- timely, accurate, checking a glucose and performing a basic Cincinnati stroke scale, appropriate monitoring, sending a stroke alert to the nearest appropriate facility, and bringing the patient straight to CT for the ED team to jump into action. Who knows, maybe someday our more rural services will start identifying LVO strokes and utilizing our HEMS services to get them to a CSC in the future. Thank you to everyone out there putting the time and passion into researching, implementing and closely QA'ing these new clinical changes. Looking forward to the research that will come out of all the systems out there implementing LVO screening by EMS, and certainly hope to see a significant clinical benefit to patients!

For reference and example, here are some Wisconsin LVO protocols currently in use:
-Milwaukee's (using BEFAST): http://county.milwaukee.gov/ImageLibrary/Groups/cntyOEM/EMS/Standards-of-care/Cardio/Stroke2018.pdf
-Madison/Dane County's (using FAST-ED, see page 73): https://em-ems.countyofdane.com/documents/pdf/2018%20DRAFT%20EMS%20Protocols%20-%20DRAFT/DCEMS%20Protocols_%203.9.18%20FINAL%20(web).pdf
-LaCrosse/TriState (using FAST-ED, see page 28): http://www.tristateambulance.org/documents/TSA%20Medical%20Guidelines.pdf
– Aurora Lybeck

 

Last Words

 Why would it be necessary for EMS to make this decision alone? Call stroke alert and report to online medical control” – Mario

Prehospital stroke care does not exist in isolation. The advent of endovascular therapy for stroke challenges the specialty of EMS to  take innovative approaches to system design that incorporate best evidence to improve patient outcomes while balancing the strain on resources.  The best solutions will consider regional factors, focus on field provider education and value comprehensive quality improvement initiatives that acknowledge the critical role of the EMS provider in the stroke care continuum.

 

Discussion Summary by EMS MEd Editor, Maia Dorsett MD PhD (@maiadorsett)

Peer Reviewed by Peter Panagos, MD (@panagos_peter)

References:

 1. Berkhemer, O. A., Fransen, P. S., Beumer, D., Van Den Berg, L. A., Lingsma, H. F., Yoo, A. J., ... & van Walderveen, M. A. (2015). A randomized trial of intraarterial treatment for acute ischemic stroke. New England Journal of Medicine372(1), 11-20.

2. Goyal, M., Demchuk, A. M., Menon, B. K., Eesa, M., Rempel, J. L., Thornton, J., ... & Dowlatshahi, D. (2015). Randomized assessment of rapid endovascular treatment of ischemic stroke. New England Journal of Medicine372(11), 1019-1030.

3. Saver, J. L., Goyal, M., Bonafe, A., Diener, H. C., Levy, E. I., Pereira, V. M., ... & Jansen, O. (2015). Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. New England Journal of Medicine372(24), 2285-2295.

4. Jovin, T. G., Chamorro, A., Cobo, E., de Miquel, M. A., Molina, C. A., Rovira, A., ... & Millán, M. (2015). Thrombectomy within 8 hours after symptom onset in ischemic stroke. New England Journal of Medicine372(24), 2296-2306.

5. Campbell, B. C., Mitchell, P. J., Kleinig, T. J., Dewey, H. M., Churilov, L., Yassi, N., ... & Wu, T. Y. (2015). Endovascular therapy for ischemic stroke with perfusion-imaging selection. New England Journal of Medicine372(11), 1009-1018.

6. Goyal, M., Menon, B. K., Van Zwam, W. H., Dippel, D. W., Mitchell, P. J., Demchuk, A. M., ... & Donnan, G. A. (2016). Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. The Lancet387(10029), 1723-1731.

7. Nazliel, B., Starkman, S., Liebeskind, D. S., Ovbiagele, B., Kim, D., Sanossian, N., ... & Duckwiler, G. (2008). A brief prehospital stroke severity scale identifies ischemic stroke patients harboring persisting large arterial occlusions. Stroke39(8), 2264-2267.

8.  de la Ossa, N. P., Carrera, D., Gorchs, M., Querol, M., Millán, M., Gomis, M., ... & Escalada, X. (2014). Design and validation of a prehospital stroke scale to predict large arterial occlusion: the rapid arterial occlusion evaluation scale. Stroke45(1), 87-91.

9.  Katz, B. S., McMullan, J. T., Sucharew, H., Adeoye, O., & Broderick, J. P. (2015). Design and validation of a prehospital scale to predict stroke severity: Cincinnati Prehospital Stroke Severity Scale. Stroke, STROKEAHA-115.

10.  Kummer, B. R., Gialdini, G., Sevush, J. L., Kamel, H., Patsalides, A., & Navi, B. B. (2016). External validation of the cincinnati prehospital stroke severity scale. Journal of Stroke and Cerebrovascular Diseases25(5), 1270-1274.

11.  Lima, F. O., Silva, G. S., Furie, K. L., Frankel, M. R., Lev, M. H., Camargo, É. C., ... & Nogueira, R. G. (2016). Field assessment stroke triage for emergency destination: a simple and accurate prehospital scale to detect large vessel occlusion strokes. Stroke47(8), 1997-2002.

12.  Hastrup, S., Damgaard, D., Johnsen, S. P., & Andersen, G. (2016). Prehospital acute stroke severity scale to predict large artery occlusion: design and comparison with other scales. Stroke, STROKEAHA-115.

13.  Demeestere, J., Garcia-Esperon, C., Lin, L., Bivard, A., Ang, T., Smoll, N. R., ... & Parsons, M. (2017). Validation of the National Institutes of Health stroke scale-8 to detect large vessel occlusion in ischemic stroke. Journal of Stroke and Cerebrovascular Diseases26(7), 1419-1426.

14.  McMullan, J. T., Katz, B., Broderick, J., Schmit, P., Sucharew, H., & Adeoye, O. (2017). Prospective prehospital evaluation of the Cincinnati stroke triage assessment tool. Prehospital Emergency Care21(4), 481-488.

15. Nogueira, R. G., Jadhav, A. P., Haussen, D. C., Bonafe, A., Budzik, R. F., Bhuva, P., ... & Sila, C. A. (2018). Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. New England Journal of Medicine378(1), 11-21.

16. Albers, G. W., Marks, M. P., Kemp, S., Christensen, S., Tsai, J. P., Ortega-Gutierrez, S., ... & Sarraj, A. (2018). Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. New England Journal of Medicine378(8), 708-718.

17. Jadhav, A. Desai, S., Kenmuir C, Rocha, M, Starr, M, Molyneaux, B, Gross, B, Jankowitz, B, Jovin, T. (2018).  Eligibility for Endovascular Trial Enrollment in the 6- to24- hour time window: Analysis of a Single Comprehensive Stroke Center. Stroke. 49:00-00.

 

 

Article Bites #4: Learning from the Military - Association between Prehospital Blood Product transfusion & survival for Combat Casualties

Cookie_stylzed_square.jpg

Article:

Association of Prehospital Blood Product Transfusion During Medical Evacuation of Combat Casualties in Afghanistan With Acute and 30-Day Survival

Shackelford SA, Del junco DJ, Powell-Dunford N, et al. Association of Prehospital Blood Product Transfusion During Medical Evacuation of Combat Casualties in Afghanistan With Acute and 30-Day Survival. JAMA. 2017;318(16):1581-1591. [PMID: 2906742]

Background & Objectives:

Given that hemorrhage is the leading cause of death in patients suffering from severe traumatic injuries, the utility of prehospital blood product transfusion has been a highly debated topic. Despite the important role of early transfusion in the management of hemorrhagic shock, the majority of published data at this time has shown inconclusive findings with regards to survival benefit from prehospital blood product transfusion, particularly within civilian trauma systems. Many of these studies suffered from significant flaws, and therefore, the verdict is still out on the role of prehospital transfusion. The purpose of this study was to address these deficiencies in the medical literature by studying the effect of prehospital transfusion within the context of the US military experience on MEDEVAC aircraft in Afghanistan. More specifically, the authors of this manuscript wanted to study the following question: Is prehospital blood product transfusion among military combat casualties associated with improved survival at 24 hours and at 30 days?

Methods:

The investigators conducted a retrospective cohort study of US military combat casualties in Afghanistan between April 1, 2012 and August 7, 2015. Patients were recruited from the Department of Defense trauma registry, the prehospital trauma registry, and the Armed Forces Medical Examiner System Database. Inclusion in the study was predicated on the following criteria being met: 

1.     US military service member who survived until MEDEVAC rescue from point of injury AND

2.     At least 1 of the following criteria for prehospital transfusion for severe trauma 

· 1 or more traumatic limb amputations with at least 1 amputation located above the knee or elbow OR 

· Hemorrhagic shock defined by systolic blood pressure <90 mmHg or heart rate >120 beats per minute 

The interventions that were examined were 1) initiation of prehospital transfusion (red blood cells and/or plasma) and 2) minutes from MEDEVAC rescue to initiation of transfusion regardless of setting (i.e. in the field vs surgical hospital). As stated earlier, the key outcomes that were examined were survival at 24 hours and at 30 days. Interestingly, the investigators compared individuals who received prehospital transfusion to nonrecipients of prehospital transfusion. These individuals were frequency matched based on 5 characteristics including mechanism of injury, prehospital shock, type and severity of traumatic limb amputation hemorrhagic torso injury assessed by Abbreviated Injury Scale (AIS) and finally severity of head injury assessed by AIS score. Using Cox regression analysis, further stratification was performed and adjusted for age, injury year, transport team, tourniquet use and time to MEDEVAC rescue. 

Key Results:

During the specified time frame of the study, there were 502 casualties who met inclusion criteria. 55 individuals received prehospital transfusion vs 447 individuals who did not receive transfusion. Of these individuals who did not receive transfusion, 345 were frequency matched to prehospital transfusion recipients based on the characteristics mentioned above. The key findings were as follows:

With respect to the entire study population:

· Within 24 hours of MEDEVAC rescue, 3/55 (5%) of prehospital transfusion recipients died compared to 85/447 (19%) of non-recipients (between group difference -14%; 95% CI -21% to -6%; p=0.01). 

· Within 30 days of MEDEVAC rescue, 6 prehospital transfusion recipients died (11%) compared to 102 non-recipients (23%) (between group difference -12%; 95% CI -21% to -2%; p=0.04)

With respect to matched study cohorts:

· Within 24 hours of MEDEVAC rescue, 3 (5%) prehospital transfusion recipients died compared 69 (20%) matched non-recipients (between group difference -15%; 95% CI -22% to -7%; p=0.007)

· Within 30 days of MEDEVAC rescue, 6 (11%) prehospital transfusion recipients died  compared to 78 (23%) matched non-recipients (Between group difference -12%; 95% CI -21% to -2%; p=0.05)

With respect to survival analysis:

· Among the 386 patients within the matched groups, adjusted hazard ratios were calculated. The investigators reported the adjusted hazard ratio for mortality to be 0.26 (95% CI 0.08 to 0.84; p=0.02) within the first 24 hours. Within the first 30 days, the adjusted hazard ratio for mortality was 0.39 (95% CI 0.16 to 0.92; p=0.03). 

With respect to time to first transfusion:

· The study revealed that time to initial transfusion was associated with reduced mortality within 24 hours only up to the first 15 minutes after MEDEVAC rescue (adjusted hazard ratio 0.17 95% CI 0.04-0.73; p = 0.02)

Takeaways:

· For US military casualties in Afghanistan, prehospital blood transfusion was associated with a statistically significant improvement in survival at 24 hours and 30 days compared with a matched sample that received no prehospital transfusion. 

· Early prehospital transfusion was associated with improved mortality but only within the first 15 minutes of MEDEVAC rescue. 

 

What this means for EMS:

There is no question that civilian trauma care has been greatly influenced by lessons learned on the battlefield. While this study performed on MEDEVAC helicopters in Afghanistan supports the notion that improved mortality can be achieved with prehospital blood transfusion for hemorrhagic shock, the translation of these findings to EMS systems back home may be more challenging. For starters, the logistical implementation of prehospital blood transfusion would require massive utilization of precious resources. Refrigeration, coordination with blood banks and hospitals, and care as to avoid wasting of life saving blood products are few of the many obstacles to ubiquitous implementation of prehospital blood transfusion in the civilian EMS world. Furthermore, the advanced resuscitative capabilities of MEDEVAC aircraft may not always be readily available in civilian systems, which may have accounted for the improved mortality observed in the study. Overall, while the results from the study were extremely encouraging, more research needs to be done to evaluate the precise role of prehospital transfusion in civilian EMS settings. 

Lulla.jpg

Mentorship Matters.

By Christopher Galton, MD NRP

Mentorship_thumbnail.jpg

When we start our EMS careers, the path forward seems easy.  You want to run every great call there is to run and you tell yourself that the path to becoming the best paramedic or EMT is through sticking tubes into people, covering up holes in the chest, and driving fast down the road.  After a few years, most of us realize that longevity in this career comes from being satisfied with the less sexy calls.  I was recently standing around with a group of EMS colleagues and we were talking about how the people that stay in this career don't depend on the drama to keep them going.  This discussion got me thinking about the value of mentorship.

My three.

Three very important people in my career shaped the paramedic and physician that I am today.   These three people helped guide me toward a healthy EMS career and are a large part of why I continue to work in EMS even though the cost to my personal life is frequently high.

My first medical director was one of the early Denver General paramedics.  After a long paramedic career, he went on to be a very successful emergency physician and eventually the EMS medical director of Colorado.  Arthur Kanowitz was the physician that introduced me to the idea that EMS patients don't need to suffer.  He believed that EMTs and paramedics had the ability to make positive impacts on the lives of every patient they interacted with.  In the late 1990s, the mindset in EMS was that pain medications were potentially dangerous and should be used in only the worst cases.  Dr. Kanowitz challenged that idea and pushed back against many powerful and prominent physician EMS leaders.  He did research on the use of prehospital analgesics and demonstrated both safety and efficacy.  He took that information to his colleagues and fought for what he believed in.  His passion for looking past the "emergency" part of what we do and treating ailments without regard to circumstance, continues to change EMS minds across the country.  Art is the reason that I am so passionate about treating pain and the reason that I will not stop preaching his vision until our collective performance is at a high level.  

The first "ALS chief" I ever worked for was another early Denver General paramedic named Jeff Forster.  Jeff was a legend in Denver as one of the best paramedics they ever turned out.  He was the type of guy that people turned to when things were going bad, and he was the paramedic that every other paramedic wanted to be, including a baby paramedic named Galton.  He was a legend for a variety of reasons, and he taught me an immense amount about not only EMS, but how to treat employees, how to lead by example, and the meaning of being a leader instead of a manager.  One day, when the world was blowing up, he hopped on an ambulance and we went on a call together.  After the call, he cleaned the back of my ambulance better than it has ever been cleaned before.  I told him that I was happy to clean up after myself and asked him why he not only cleans the floors of my ambulance so diligently, but still rides at all hours of the day taking any call that came his way.  He looked me square in the eyes and said one of the most impactful things I have every heard.  He said "never ask someone else to do something that you are not willing to do yourself."  He led by example, and of all the great people I have met over the course of my professional life, he stands out as someone that worked hard everyday to earn, and then maintain, the respect from those around him.  It did not matter whether they were the chief medical director, entry level paramedic, or housekeeping staff cleaning up at the end of the day.  He was always happy to help anyone do anything just to demonstrate that he valued them as much as we valued him.  To this day, if he called me for help, I would claw my way through a brick wall to help him without even a thought.  

Finally, I want to end with the person that had the most significant impact on the way I operate as a paramedic today.  Thom Hillson (aka Thom Dick) is a columnist for multiple different EMS magazines and journals.  He has written books about caring for patients and fellow EMS colleagues.  To this day, I have never met another human being that cared more for every other living sole in this world.  I started off my EMS career working the night shift for eight years, and I loved it.  One of the drawbacks of the night shift is this creeping cynicism that becomes suffocating because of the typical clientele that make up your regular call volume working in an urban/suburban EMS system.  I had the pleasure of working with Thom for 4-5 years early in my career when I was an impressionable paramedic.  I remember thinking he was a wise old sage that had been everywhere and seen everything.  The two of us developed a wonderful relationship and he ended up writing me the best letter of recommendation for medical school that I have ever seen.  

One day Thom pulled me aside and asked me to go grab lunch with him and he was the type of guy that you wanted to be around all the time, so I was thrilled.  While we were out eating, he asked me if everything was all right.  Initially I thought this was just banter, but he continued to say that he was worried about me.  He had noticed a deterioration in my typically positive, upbeat attitude.  I told him about being a little depressed lately because of some bad outcomes and how I was likely going through a period of burn out, but I really just tried to blow it off.  He did not let up and we proceeded to have lunch weekly for the next few months.  During those lunch meetings, Thom and I talked about a wide variety of things, many times not mentioning EMS at all.  It was at one of these meetings that he used a phrase that has stuck with me to this day and is ever present when I am working in EMS.  We were talking about customer service in EMS and why I was worried that I stopped caring about my patients.  He specifically challenged me by saying "why not."  What he meant by that was much more complicated than I initially appreciated.  He was really asking why I was not willing to go the extra mile anymore to take care of people and why was I staying in this job if that was the case.  This was the point that I realized that a career in emergency services is not about you, it's about the people that need you.  This is when I finally understood that being an EMS professional was not about the person that could put an endotracheal tube in upside down with a patient stuck in a car that was hanging off a cliff in a snowstorm.  It was about knowing that someone is calling 911 because they need your help.  That might be taking them to the hospital because they are having chest pain, but it also might mean helping them clean up after falling on the way to the toilet.  You don't get into this career because you want to help an elderly person change out of urine soaked clothes and then start a load of laundry.  You do stay in this career because you realize that those are the patients that need your help the most and you are the person that they turned to in their moment of need.  I would encourage you to take Thom's advice and ask yourself "why not"if you ever have a question about customer service and the needs of the citizens that we are charged to care for in their time of crisis.

 

Finding the Right Mentor

My mentors are a large part of why I have been able to achieve professional success and reach goals that I would have thought were out of reach.  Most high level leaders at Forutne 500 companies insist that their employees have mentors and embrace those relationships while accepting the lost time required to build them.   They know that they will get more out of their employees in the long run when mentees have goals, purpose, and guidance. 

I’m sure you have all heard the phrase “it’s not what you know, it’s who you know.”  Your mentor is the “who” in that expression that is capable of opening doors and making connections on your behalf.  My mentors have frequently made phone calls, sent emails, and made personal introductions to connect me with the right people.  That is how business is done and you should not be embarrassed to take advantage of those connections. 

Hopefully I sold you on the value of having a mentor in your professional life.  The first hurdle is finding the right mentor for you.  I think you need to start by identifying the personality traits that you want to emulate.  In EMS, those traits might include unconditional empathy, a calming demeanor, a driving desire to learn, or an altruistic belief in serving the community.  Your mentor should be someone who has established a benchmark for you to work towards.  

The second step is identifying people that you already have a connection to, that are 2-3 steps above you in the pile.  For instance, I am one of the Deputy Medical Directors of Monroe County.  If my professional goal was to become a Chief Medical Director of a county or region, then I would start by identifying people in those positions who would serve as good benchmarks for me.  They are doing the job that I want to have, and are consistently demonstrating  their success in that position.

Step three is approaching the potential mentor.  You anxiety level should be pretty low.  This is not asking someone out of your league on a date or walking into your boss’s office to ask for a raise.  I’ll let you in on a little secret, any good mentor will be flattered that you have asked them to help you grow in your career.  By asking them, you are saying that you think they are doing something right and that they have the ability to guide you to success.  That is a pretty impressive compliment and if they don’t see that, then they are probably not a good mentor for you anyway. 

The final step is developing that relationship.  A potential mentor needs to know that you will value their input and put their advice to good use.  You are asking them to give up their valuable time to guide your forward in your career with little direct benefit for them.  Kathy Caprino, a columnist for Forbes, recently tackled the issue of finding a mentor and she takes it to the next level by saying that a potential mentor has “to like, trust and believe in you already.” She goes on to ask the question, “are you somebody you yourself would like to mentor?”  If you cannot answer yes to that question, then you need to work to become that person before you consider engaging a mentor.  

Mentorship should not be forced.  The relationship needs to develop organically without it being coerced.  This usually occurs during the initial few meetings where your mentor will start to help you set some goals and work on the things that need to occur for you to meet your goals.  A great mentor is someone who can inspire you when you need to be inspired and can put you in your place when you need to get leveled out.  If the relationship is not that strong, then that is not mentorship.  Your mother can be your cheerleader.  Your mentor fills the role of coach, cheerleader, friend, leader, and follower based on what you need, when you need it.  It is a special relationship that should be cherished.

 

 

A Productive Mentor-Mentee Relationship

So, now that you have a mentor, how do you turn that into a productive relationship?

When I work with my mentors or I have mentees, I always start with a face to face meeting.  This can be as simple as meeting for coffee, lunch, or some other informal setting.  Before you commit to this, you need to analyze the type of relationship you have or will have with your mentor/mentee.  I think the relationship between a medical student and the dean of the medical school would be different than the relationship between an EMT working through paramedic school and their paramedic preceptor.  Some meetings should happen during normal business hours in a traditional office setting, while some will happen in the corner pub after a long shift.  Where to meet up has a lot to do with the type of relationship that will develop.

The next step is preparing for your meeting.  In my case, that means developing a list of things I want to talk about in the weeks prior to the meeting, and then writing it down on a scrap sheet of paper that lives folded into my wallet until meeting time.  Your list does not need to kill a tree if you are smart enough to use your smart phone.  Maybe it is an email sent ahead of time or memorized if you did not get hit on the head with an oxygen bottle too often.  Even if your mentor makes fun of your list (mine does every time), having a list demonstrates that you value their time and you want to be productive during your meeting.

During your meeting, what type of things should you discuss.  In my mind, this meeting is broken up in three parts.  The first part is usually spent catching up with my mentor on a personal level.  Frequently I speak with my mentor or mentee about how things have been going because this is a relationship so it’s OK to invest into it and be human.  Any good mentor wants to know that their mentee is maintaining adequate priorities and perspective with everything going on, especially when things are getting really busy.  The second part is a review of the previous meeting and progress on the subjects that you discussed at the last meeting.  The premise of this relationship is based on the mentor providing guidance to the mentee, so they certainly want to hear about how you advanced the ideas that you both spoke of previously.  The final part is the new material and this is typically where the list comes into play.

In this busy world, everyone’s time is valuable.  By the time my meeting hits, I have usually thought through what I want to say about the previous subjects as well as the newer things I want to talk about.  It is OK and expected that your ideas are not refined, that is why you have meetings with your mentor.  Part of their role is to help you refine those ideas into viable actions.  A meeting should not be one sided and the mentor expects to have ideas bounced off them.  You should expect them to critique and suggest things that you had not considered.  Along those lines, it is OK to take notes during your interaction.  Any mentor should be flattered that you are writing their ideas down.  It shows that you value their opinions enough that you do not want to risk forgetting.

I have benefited greatly from having positive mentors in my life.  I continue to have multiple mentors today who both directly and indirectly inspire me to be the greatest paramedic, physician, medical director, anesthesiologist, intensivist, coach, and friend that I can possibly be.  If only they could help me find some time to sleep …

galton_bio.001.jpeg

 

The text above first appeared as a three part series in the University of Rochester Division of Prehospital Medicine Newletter.

 

 

Can you leave them be? A Review of The Recommendations of Hypoglycemia Treat and Release Protocols

by David Ismael Arbona Calderón, MD

Case Scenario:

glucose_thumbnail.jpg

A 48 y/o unconscious male presented with dizziness and weakness in his office. On arrival of paramedics, patient is diaphoretic and unresponsive, but with pulse and spontaneous respirations. Initial assessment reveals a glucose level of 23 mg/dL. Paramedics find the patients current medication list in the patient’s wallet. Patient is given IV dextrose and regains consciousness. After returning to baseline the patient is refusing transport and further treatment. How do you proceed?

Literature Review:

Diabetes is one of the most common chronic disease, with estimated diagnosis of 23.1 million people in the United States and another 84.1 million adults with prediabetes.[1] As diabetes continues to increase in our population, hypoglycemic events are rising secondary to the use of insulin and oral hypoglycemic agents. Insulin management has been related to the most serious cases of hypoglycemia, either due to strict goals of keeping normal glucose levels or due to confusion between dosing and type of insulin medication. Other diabetes medications like sulfonylureas have been linked to episodes of hypoglycemia and accidental ingestion in the pediatric population. Although hypoglycemia is more common in type 1 diabetes (T1DM), patients with type 2 diabetes (T2DM) experience a similar frequency of these events as they require more aggressive treatment.

The National Electronic Injury Surveillance System-Cooperative Adverse Drug Event Surveillance (NEISS-CADES) has estimated that around 97,648 ED visits occur annually due to insulin-related hypoglycemia and errors related to diabetes management. It has been accounted that around 10% of ED visits are considered under Adverse Drug Events (ADEs) occur annually.[2]

Around 95% of hypoglycemic events occur outside of medical settings, requiring assistance by family members, other caregivers, or emergency medical services (EMS)  personnel.[3] Patients with diabetes might not understand when hospital evaluation is needed for proper management of low blood sugars. EMS personnel carry most of the weight of identifying red flags of hypoglycemic episodes that require further workup as some cases can be fatal. There is a continuous debate in the ambulance service as to whether patients suffering from hypoglycemia need to be transported to the hospital after examination and treatment in the field.[4] While some studies have referred that most cases of hypoglycemia can be successfully treated at the scene, conflictive results have been reported in other cases with complications days later.[5]

On 1991, Thompson et al produced one of the earliest studies of treat and release protocols proposed five criteria that should be met before being released form prehospital care without the need for further treatment:

1.    History of either T1DM or T2DM

2.    Pretreatment blood sugar of less than 4.4 mmol/L or 80mg/dL

3.    Post-treatment blood sugar equal or greater to 4.4 mmol/L or 80mg/dL

4.    Return to normal mental status within 10 minutes of treatment

5.    Absence of complicating factors that require ED evaluation, such as renal dialysis, chest pain, alcohol, dyspnea, of falls.

Clinical manifestations of hypoglycemia are nonspecific, and can be divided into neurogenic and neuroglycopenic symptoms.[6] 

 

hypoglycemia.001.jpg

As reported by NEISS-CADES, patients over 80 years old have a higher risk of being hospitalized due to hypoglycemic events since neuroglycopenic symptoms can mimic other cardiovascular and neurologic conditions.

Other studies regarding younger groups, involving T2DM and over the age of 50 and glycated hemoglobin (HbA1c), suggest that both extreme hyperglycemia and hypoglycemia contribute to poor outcomes when encountering a hypoglycemic event.[7] This can also be applicable for patients with Diabetes Type 1 with extreme values of HbA1c, as recurrent episodes of hypoglycemia and impaired awareness during these episodes are known major risk factors for these events.

Concerns about inappropriate use of sulfonylureas in the elderly and hospitalization rates due to hypoglycemic episodes have been studied.[8] Around one-third of hypoglycemic episodes in the ED were exclusively related to sulfonylurea treatment as they had more prolonged hypoglycemia. Hospital admission of all patients under sulfonylurea treatment with hypoglycemia has been strongly recommended, arguing that regardless resolution of hypoglycemia was done in the ED, observation was needed.  Moreover, treatment of hypoglycemia due to sulfonylurea includes octreotide administration. [9]

The National Model EMS Clinical Guidelines (NASEMSO Model) published on 2017, facilitated hypoglycemia protocol.[10] Treatment is focused on level of consciousness and patient disposition will also rely on initial neurological presentation. In a nutshell, a conscious patient with a patent airway can obtain oral glucose, with adults receiving approximately 25 grams of dextrose (at a concentration of 10-50%) and pediatric patients receiving 0.5-1g/kg (at a concentration of 10-25%).

Under NASEMSO Model, an unconscious patient will require Dextrose IV with or without use of Glucagon. A maximum of 25g of 10-50% dextrose IV was determined for adults and for children the 0.5-1g/kg of 10-25% dextrose IV. Patient is in need of transport if hypoglycemic symptoms continue or if patient had a seizure at any point of the episode. Release without transport should only be considered if patient meets all of the following:

  1. Repeat glucose measurement over than 80mg/dL
  2. Patient takes insulin or metformin to control diabetes
  3. Patient returns to normal mental status, with no focal neurologic signs or symptoms after receiving glucose/dextrose
  4. Patient can promptly obtain and will eat a carbohydrate meal
  5. Patient or legal guardian refuses transport and EMS providers agree transport not indicated
  6. A reliable adult will be staying with patient
  7. No major co-morbid symptoms occur, such as chest pain, shortness of breath, seizures, intoxication
  8. A clear cause of the hypoglycemia is identified (e.g. skipped meal)

Regardless of National EMS guidelines established for hypoglycemia, there is still variability in EMS protocols throughout the United States. [10-12] Further studies are required to determine the reasons underlying these variations and patient outcome.

Case Scenario Follow-Up:

Patient was given an early lunch at the office, had normal vital signs, and normal EKG. On further questioning patient refers he did not eat breakfast because he was running late for work but did administer his insulin. Patient denied any other symptoms and a coworker is able to stay and watch after the patient. Paramedics used their well person protocol to determine if any abnormalities warranted further intervention. Assessed patient for capacity and oriented the patient about the need for close follow up. Patient indicated he understood all orientations and refused further care.

Take Home:

 Any patient with seizures, persistent symptoms of hypoglycemia, and that does not comply with the NASEMSO Model for release without transport criteria should be taken to the emergency department for further evaluation.

arbona.001.jpg

References:

[1] Centers for Disease Control and Prevention. National diabetes statistics report: Estimates of diabetes and its burden in the United States, 2017. Atlanta, GA: US Department of Health and Human Services. 2017.  https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf

[2] Geller AI, Shehab N, Lovegrove MC, et al. National Estimates of Insulin-Related Hypoglycemia and Errors Leading to Emergency Department Visits and Hospitalizations. JAMA Intern Med. 2014;174(5):678–686. doi:10.1001/jamainternmed.2014.136

[3] Lipska, K. J. et al. "Hba1c And Risk Of Severe Hypoglycemia In Type 2 Diabetes: The Diabetes And Aging Study." Diabetes Care 36.11 (2013): 3535-3542. Web. 9 May 2018.  https://doi.org/10.2337/dc13-0610

[4] Roberts, K., and A. Smith. “Outcome of diabetic patients treated in the prehospital arena after a hypoglycemic episode, and an exploration of treat and release protocols: a review of the literature. (Prehospital Medicine).“ Emergency Medicine Journal, May 2003, p. 274+. Health Reference Center Academic. http://link.galegroup.com.ezproxyhost.library.tmc.edu/apps/doc/A102769958/HRCA?u=txshracd2509&sid=HRCA&xid=14527de1

[5] Tohira, H., Fatovich, D., Williams, T. A., Bremner, A., Arendts, G., Rogers, I. R., . . . Finn, J. (2016). Paramedic checklists do not accurately identify post-ictal or hypoglycaemic patients suitable for discharge at the scene. Prehospital and Disaster Medicine, 31(3), 282-293. doi:http://dx.doi.org/10.1017/S1049023X16000248

[6] Hepburn, D. A. et al. "Symptoms Of Acute Insulin-Induced Hypoglycemia In Humans With And Without IDDM: Factor-Analysis Approach." Diabetes Care 14.11 (1991): 949-957. Web. 9 May 2018.

[7] Moheet, Amir, and Elizabeth R. Seaquist. "Hypoglycaemia, Emergency Care And Diabetes Mellitus." Nature. N.p., 2014. Web. 9 May 2018.doi:10.1038/nrendo.2014.67

[8] Rajendran R, Hodgkinson D, Rayman G. Patients with diabetes requiring emergency department care for hypoglycaemia: characteristics and long-term outcomes determined from multiple data sources. Postgraduate Medical Journal 2015;91:65-71. doi:10.1136/postgradmedj-2014-132926

[9] McLaughlin, S. A., Crandall, C. S., & McKinney, P. E. (2000). Octreotide: an antidote for sulfonylurea-induced hypoglycemia. Annals of emergency medicine36(2), 133-138.

[10] "National Model EMS Clinical Guidelines". Nasemso.Org, 2017, http://www.nasemso.org/documents/National-Model-EMS-Clinical-Guidelines-2017-Distribution-Version-05Oct2017.pdf. Accessed 20 May 2018.

[10] Paul Rostykus, Jamie Kennel, Kristian Adair, Micah Fillinger, Ryan Palmberg, Amy Quinn, Jonathan Ripley & Mohamud Daya (2016) Variability in the Treatment of Prehospital Hypoglycemia: A Structured Review of EMS Protocols in the United States, Prehospital Emergency Care, 20:4, 524-530, doi: 10.3109/10903127.2015.1128031

[11] Howard H. Moffet, E. Margaret Warton, Lee Siegel, Karl Sporer, Kasia J. Lipska & Andrew J. Karter (2017) Hypoglycemia Patients and Transport by EMS in Alameda County, 2013–15, Prehospital Emergency Care, 21:6, 767-772, doi: 10.1080/10903127.2017.1321707

[12] Khunti, K., Fisher, H., Paul, S., Iqbal, M., Davies, M. J., Siriwardena, A. N. Severe hypoglycemia requiring emergency medical assistance by ambulance services in the East Midlands: A retrospective study. Primary Care Diabetes.2013; (7):159-165.

Article Bites #3: Does the Duration and Depth of Out-of-Hospital Hypotension affect mortality in TBI?

Cookie_stylzed_square.jpg

Outcomes related to traumatic brain injury are thought to be related to cerebral perfusion pressure (among other factors). Cerebral perfusion pressure is equal to mean arterial pressure minus the intracranial pressure. Hypotension decreases cerebral perfusion pressure to the brain and is associated with increased mortality in this patient population. This is of particular importance especially in the prehospital arena where prior research has demonstrated that hypotension is associated with increased mortality in patients with traumatic brain injury. However, there have been no studies to date have examined the relationship between both the depth and the duration of hypotension with  mortality in patients with traumatic brain injury. The investigators of this study sought to tackle this very issue.

 

Methods:

The investigators conducted a retrospective observational study of patients with traumatic brain injury within the EPIC (Excellence in Prehospital Injury Care) database as part of the Arizona State Trauma Registry between January 2007 and March 2014. The primary outcome examined was survival to hospital discharge. Patients were determined to have traumatic brain injury based on trauma center diagnoses as a part of either isolated traumatic brain injury or multi system traumatic injury.  More specifically, participants were selected who met the classification for moderate or severe traumatic brain injury based on CDC guidelines, ICD-9 head region severity scores and Abbreviated Injury scores. Patients were excluded from the study if they were younger than 10 years of age, were involved in an interfacility transfer or had any systolic blood pressure greater than 200, or systolic blood pressure of 0 indicating traumatic arrest. Hypotension was defined as SBP <90 mmHg. To calculate the “dose” of hypotension, the investigators looked at the depth of hypotension integrated across exposure time (in minutes) AKA “area under the curve”. The integrated values from all hypotensive segments were added together to obtain a dose (in mmHg-minutes). The relationship between mortality and hypotension dose was examined by logistic regression analysis with adjustment for confounding factors.

 

Key Results:

A total of 16,711 transports for patients with traumatic brain injury were analyzed during the study period, of which 7,521 met inclusion criteria for the study. The key findings were as follows:

· 539 of 7,521 patients (7.2%) were hypotensive during transport

· Among patients with no hypotension (6,982 patients), mortality was 7.8% (95% CI 7.2 to 8.5%). This compared to patients who were hypotensive, where there was 33.4% (95% CI 29.4 to 37.6%) mortality

· Mortality increased in a linear relationship using a log2 hypotension dose and log odds of death (OR =1.19, 95% CI 1.14 to 1.25) per 2 fold increase in hypotension dose increase. In specific quartiles of hypotension dose, the following outcomes were established:

o   16.3% mortality with dose between 0.01 to 14.99 mmHg-minutes

o   28.1% mortality with dose between 15 to 49.99 mmHg-minutes

o   38.8% mortality with dose between 50-141.99 mmHg-minutes

o   50.4% mortality with dose greater than 142 mmHg-minutes

 

Takeaways:

· A dose response exists between prehospital hypotension dosage and mortality. Each 2 fold increase in hypotension dose (depth of hypotension integrated over time) during prehospital transport is associated with a 19% increase in mortality

 

What this means for EMS:

Out-of-hospital hypotension for patients with traumatic brain injury is associated with worse patient outcomes, i.e. decreased survival to hospital discharge. While this study was observational and did not address whether treatment of hypotension improved survival or neurologically intact recovery, it did emphasize an important variable that may serve as the foundation for future EMS research and quality improvement initiatives regarding the management of traumatic brain injury in the field. Going forward, more accurate (and more frequent) acquisition of blood pressure measurements in the prehospital setting may prove to be invaluable in implementing future prehospital resuscitative strategies for patients with traumatic brain injury. 

Lulla.jpg